MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbres Structured version   Visualization version   Unicode version

Theorem csbres 5399
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbres  |-  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )

Proof of Theorem csbres
StepHypRef Expression
1 df-res 5126 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
21csbeq2i 3993 . 2  |-  [_ A  /  x ]_ ( B  |`  C )  =  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )
3 csbxp 5200 . . . . . 6  |-  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )
4 csbconstg 3546 . . . . . . 7  |-  ( A  e.  _V  ->  [_ A  /  x ]_ _V  =  _V )
54xpeq2d 5139 . . . . . 6  |-  ( A  e.  _V  ->  ( [_ A  /  x ]_ C  X.  [_ A  /  x ]_ _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
63, 5syl5eq 2668 . . . . 5  |-  ( A  e.  _V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
7 0xp 5199 . . . . . . 7  |-  ( (/)  X. 
_V )  =  (/)
87a1i 11 . . . . . 6  |-  ( -.  A  e.  _V  ->  (
(/)  X.  _V )  =  (/) )
9 csbprc 3980 . . . . . . 7  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ C  =  (/) )
109xpeq1d 5138 . . . . . 6  |-  ( -.  A  e.  _V  ->  (
[_ A  /  x ]_ C  X.  _V )  =  ( (/)  X.  _V ) )
11 csbprc 3980 . . . . . 6  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  (/) )
128, 10, 113eqtr4rd 2667 . . . . 5  |-  ( -.  A  e.  _V  ->  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V ) )
136, 12pm2.61i 176 . . . 4  |-  [_ A  /  x ]_ ( C  X.  _V )  =  ( [_ A  /  x ]_ C  X.  _V )
1413ineq2i 3811 . . 3  |-  ( [_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)
15 csbin 4010 . . 3  |-  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  i^i  [_ A  /  x ]_ ( C  X.  _V ) )
16 df-res 5126 . . 3  |-  ( [_ A  /  x ]_ B  |` 
[_ A  /  x ]_ C )  =  (
[_ A  /  x ]_ B  i^i  ( [_ A  /  x ]_ C  X.  _V )
)
1714, 15, 163eqtr4i 2654 . 2  |-  [_ A  /  x ]_ ( B  i^i  ( C  X.  _V ) )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )
182, 17eqtri 2644 1  |-  [_ A  /  x ]_ ( B  |`  C )  =  (
[_ A  /  x ]_ B  |`  [_ A  /  x ]_ C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   [_csb 3533    i^i cin 3573   (/)c0 3915    X. cxp 5112    |` cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-res 5126
This theorem is referenced by:  csbwrecsg  33173
  Copyright terms: Public domain W3C validator