| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbuni | Structured version Visualization version Unicode version | ||
| Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 22-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbab 4008 |
. . . 4
| |
| 2 | sbcex2 3486 |
. . . . . 6
| |
| 3 | sbcan 3478 |
. . . . . . . 8
| |
| 4 | sbcg 3503 |
. . . . . . . . . 10
| |
| 5 | 4 | anbi1d 741 |
. . . . . . . . 9
|
| 6 | sbcel2 3989 |
. . . . . . . . . 10
| |
| 7 | 6 | anbi2i 730 |
. . . . . . . . 9
|
| 8 | 5, 7 | syl6bb 276 |
. . . . . . . 8
|
| 9 | 3, 8 | syl5bb 272 |
. . . . . . 7
|
| 10 | 9 | exbidv 1850 |
. . . . . 6
|
| 11 | 2, 10 | syl5bb 272 |
. . . . 5
|
| 12 | 11 | abbidv 2741 |
. . . 4
|
| 13 | 1, 12 | syl5eq 2668 |
. . 3
|
| 14 | df-uni 4437 |
. . . 4
| |
| 15 | 14 | csbeq2i 3993 |
. . 3
|
| 16 | df-uni 4437 |
. . 3
| |
| 17 | 13, 15, 16 | 3eqtr4g 2681 |
. 2
|
| 18 | csbprc 3980 |
. . 3
| |
| 19 | csbprc 3980 |
. . . . 5
| |
| 20 | 19 | unieqd 4446 |
. . . 4
|
| 21 | uni0 4465 |
. . . 4
| |
| 22 | 20, 21 | syl6req 2673 |
. . 3
|
| 23 | 18, 22 | eqtrd 2656 |
. 2
|
| 24 | 17, 23 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-uni 4437 |
| This theorem is referenced by: csbwrecsg 33173 csbfv12gALTOLD 39052 csbfv12gALTVD 39135 |
| Copyright terms: Public domain | W3C validator |