| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdif2 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfdif2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dif 3577 |
. 2
| |
| 2 | df-rab 2921 |
. 2
| |
| 3 | 1, 2 | eqtr4i 2647 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-rab 2921 df-dif 3577 |
| This theorem is referenced by: difeq1 3721 difeq2 3722 nfdif 3731 difidALT 3949 ordintdif 5774 kmlem3 8974 incexc2 14570 cnambfre 33458 |
| Copyright terms: Public domain | W3C validator |