Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnambfre Structured version   Visualization version   Unicode version

Theorem cnambfre 33458
Description: A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018.)
Assertion
Ref Expression
cnambfre  |-  ( ( F : A --> RR  /\  A  e.  dom  vol  /\  ( vol* `  ( A  \  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )  =  0 )  ->  F  e. MblFn )

Proof of Theorem cnambfre
Dummy variables  f 
b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . 10  |-  ( F : A --> RR  ->  F : A --> RR )
21feqmptd 6249 . . . . . . . . 9  |-  ( F : A --> RR  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
32cnveqd 5298 . . . . . . . 8  |-  ( F : A --> RR  ->  `' F  =  `' ( x  e.  A  |->  ( F `  x ) ) )
43imaeq1d 5465 . . . . . . 7  |-  ( F : A --> RR  ->  ( `' F " b )  =  ( `' ( x  e.  A  |->  ( F `  x ) ) " b ) )
54ad2antrr 762 . . . . . 6  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  b  e. 
ran  (,) )  ->  ( `' F " b )  =  ( `' ( x  e.  A  |->  ( F `  x ) ) " b ) )
6 exmid 431 . . . . . . . . . . 11  |-  ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  \/  -.  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )
)
76biantrur 527 . . . . . . . . . 10  |-  ( ( F `  x )  e.  b  <->  ( ( F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  \/  -.  F  e.  ( ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )
)  /\  ( F `  x )  e.  b ) )
8 andir 912 . . . . . . . . . 10  |-  ( ( ( F  e.  ( ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  \/  -.  F  e.  ( ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )
)  /\  ( F `  x )  e.  b )  <->  ( ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b )  \/  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) ) )
97, 8bitri 264 . . . . . . . . 9  |-  ( ( F `  x )  e.  b  <->  ( ( F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b )  \/  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) ) )
10 retopbas 22564 . . . . . . . . . . . . . . . . . 18  |-  ran  (,)  e. 
TopBases
11 bastg 20770 . . . . . . . . . . . . . . . . . 18  |-  ( ran 
(,)  e.  TopBases  ->  ran  (,)  C_  ( topGen `  ran  (,) )
)
1210, 11ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ran  (,)  C_  ( topGen `  ran  (,) )
1312sseli 3599 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ran  (,)  ->  b  e.  ( topGen `  ran  (,) ) )
1413ad2antlr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F : A
--> RR  /\  A  e. 
dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  ->  b  e.  ( topGen ` 
ran  (,) ) )
15 cnpimaex 21060 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  b  e.  ( topGen `
 ran  (,) )  /\  ( F `  x
)  e.  b )  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( x  e.  y  /\  ( F
" y )  C_  b ) )
16153com12 1269 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  ( topGen ` 
ran  (,) )  /\  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b )  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  ( F " y )  C_  b ) )
17163expa 1265 . . . . . . . . . . . . . . 15  |-  ( ( ( b  e.  (
topGen `  ran  (,) )  /\  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )
)  /\  ( F `  x )  e.  b )  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  ( F " y )  C_  b ) )
1814, 17sylanl1 682 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  /\  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) )  /\  ( F `  x )  e.  b )  ->  E. y  e.  (
( topGen `  ran  (,) )t  A
) ( x  e.  y  /\  ( F
" y )  C_  b ) )
1918ex 450 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  /\  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) )  -> 
( ( F `  x )  e.  b  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( x  e.  y  /\  ( F
" y )  C_  b ) ) )
20 simprrr 805 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  ( y  e.  ( ( topGen ` 
ran  (,) )t  A )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) )  ->  ( F " y )  C_  b
)
21 ffn 6045 . . . . . . . . . . . . . . . . . . 19  |-  ( F : A --> RR  ->  F  Fn  A )
2221adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  F  Fn  A )
23 restsspw 16092 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
topGen `  ran  (,) )t  A
)  C_  ~P A
2423sseli 3599 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( ( topGen ` 
ran  (,) )t  A )  ->  y  e.  ~P A )
2524elpwid 4170 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ( topGen ` 
ran  (,) )t  A )  ->  y  C_  A )
26 simpl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  y  /\  ( F " y ) 
C_  b )  ->  x  e.  y )
27 fnfvima 6496 . . . . . . . . . . . . . . . . . 18  |-  ( ( F  Fn  A  /\  y  C_  A  /\  x  e.  y )  ->  ( F `  x )  e.  ( F " y
) )
2822, 25, 26, 27syl3an 1368 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  y  e.  ( ( topGen `  ran  (,) )t  A )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) )  ->  ( F `  x )  e.  ( F " y ) )
29283expb 1266 . . . . . . . . . . . . . . . 16  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  ( y  e.  ( ( topGen ` 
ran  (,) )t  A )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) )  ->  ( F `  x )  e.  ( F " y ) )
3020, 29sseldd 3604 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  ( y  e.  ( ( topGen ` 
ran  (,) )t  A )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) )  ->  ( F `  x )  e.  b )
3130rexlimdvaa 3032 . . . . . . . . . . . . . 14  |-  ( ( F : A --> RR  /\  A  e.  dom  vol )  ->  ( E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  ( F " y )  C_  b )  ->  ( F `  x )  e.  b ) )
3231ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  /\  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) )  -> 
( E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  ( F " y )  C_  b )  ->  ( F `  x )  e.  b ) )
3319, 32impbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  /\  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) )  -> 
( ( F `  x )  e.  b  <->  E. y  e.  (
( topGen `  ran  (,) )t  A
) ( x  e.  y  /\  ( F
" y )  C_  b ) ) )
3433pm5.32da 673 . . . . . . . . . . 11  |-  ( ( ( ( F : A
--> RR  /\  A  e. 
dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  ->  ( ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b )  <->  ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  E. y  e.  ( ( topGen `
 ran  (,) )t  A
) ( x  e.  y  /\  ( F
" y )  C_  b ) ) ) )
35 r19.42v 3092 . . . . . . . . . . 11  |-  ( E. y  e.  ( (
topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) )  <-> 
( F  e.  ( ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( x  e.  y  /\  ( F
" y )  C_  b ) ) )
3634, 35syl6bbr 278 . . . . . . . . . 10  |-  ( ( ( ( F : A
--> RR  /\  A  e. 
dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  ->  ( ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b )  <->  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) ) )
3736orbi1d 739 . . . . . . . . 9  |-  ( ( ( ( F : A
--> RR  /\  A  e. 
dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  ->  ( ( ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b )  \/  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) )  <->  ( E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) )  \/  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) ) ) )
389, 37syl5bb 272 . . . . . . . 8  |-  ( ( ( ( F : A
--> RR  /\  A  e. 
dom  vol )  /\  b  e.  ran  (,) )  /\  x  e.  A )  ->  ( ( F `  x )  e.  b  <-> 
( E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) )  \/  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) ) ) )
3938rabbidva 3188 . . . . . . 7  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  b  e. 
ran  (,) )  ->  { x  e.  A  |  ( F `  x )  e.  b }  =  {
x  e.  A  | 
( E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) )  \/  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) ) } )
40 eqid 2622 . . . . . . . 8  |-  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  ( F `  x ) )
4140mptpreima 5628 . . . . . . 7  |-  ( `' ( x  e.  A  |->  ( F `  x
) ) " b
)  =  { x  e.  A  |  ( F `  x )  e.  b }
42 unrab 3898 . . . . . . 7  |-  ( { x  e.  A  |  E. y  e.  (
( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  u.  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) } )  =  {
x  e.  A  | 
( E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) )  \/  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) ) }
4339, 41, 423eqtr4g 2681 . . . . . 6  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  b  e. 
ran  (,) )  ->  ( `' ( x  e.  A  |->  ( F `  x ) ) "
b )  =  ( { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  u.  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) } ) )
445, 43eqtrd 2656 . . . . 5  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol )  /\  b  e. 
ran  (,) )  ->  ( `' F " b )  =  ( { x  e.  A  |  E. y  e.  ( ( topGen `
 ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  u.  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) } ) )
45443adantl3 1219 . . . 4  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol 
/\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  /\  b  e.  ran  (,) )  ->  ( `' F "
b )  =  ( { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  u.  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) } ) )
46 incom 3805 . . . . . . . . 9  |-  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  i^i  { x  e.  A  |  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  =  ( { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) }  i^i  U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) } )
47 dfin4 3867 . . . . . . . . 9  |-  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  i^i  { x  e.  A  |  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  =  (
U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \ 
( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } ) )
48 inrab 3899 . . . . . . . . . . . 12  |-  ( { x  e.  A  |  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) }  i^i  { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) } )  =  { x  e.  A  |  ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }
4948a1i 11 . . . . . . . . . . 11  |-  ( y  e.  ( ( topGen ` 
ran  (,) )t  A )  ->  ( { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) }  i^i  { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) } )  =  { x  e.  A  |  ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) } )
5049iuneq2i 4539 . . . . . . . . . 10  |-  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) ( { x  e.  A  |  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) }  i^i  { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) } )  =  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  ( F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( x  e.  y  /\  ( F "
y )  C_  b
) ) }
51 iunin2 4584 . . . . . . . . . 10  |-  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) ( { x  e.  A  |  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) }  i^i  { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) } )  =  ( { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) }  i^i  U_ y  e.  ( (
topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) } )
52 iunrab 4567 . . . . . . . . . 10  |-  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  ( F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( x  e.  y  /\  ( F "
y )  C_  b
) ) }  =  { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }
5350, 51, 523eqtr3i 2652 . . . . . . . . 9  |-  ( { x  e.  A  |  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) }  i^i  U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) } )  =  { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }
5446, 47, 533eqtr3i 2652 . . . . . . . 8  |-  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \ 
( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } ) )  =  { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }
55 eqeq2 2633 . . . . . . . . . . . . 13  |-  ( y  =  if ( ( F " y ) 
C_  b ,  y ,  (/) )  ->  ( { x  e.  A  |  ( x  e.  y  /\  ( F
" y )  C_  b ) }  =  y 
<->  { x  e.  A  |  ( x  e.  y  /\  ( F
" y )  C_  b ) }  =  if ( ( F "
y )  C_  b ,  y ,  (/) ) ) )
56 eqeq2 2633 . . . . . . . . . . . . 13  |-  ( (/)  =  if ( ( F
" y )  C_  b ,  y ,  (/) )  ->  ( {
x  e.  A  | 
( x  e.  y  /\  ( F "
y )  C_  b
) }  =  (/)  <->  {
x  e.  A  | 
( x  e.  y  /\  ( F "
y )  C_  b
) }  =  if ( ( F "
y )  C_  b ,  y ,  (/) ) ) )
57 simprrl 804 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ( ( topGen `  ran  (,) )t  A
)  /\  ( F " y )  C_  b
)  /\  ( x  e.  A  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) )  ->  x  e.  y )
5825adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ( (
topGen `  ran  (,) )t  A
)  /\  ( F " y )  C_  b
)  ->  y  C_  A )
5958sselda 3603 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  ( ( topGen `  ran  (,) )t  A
)  /\  ( F " y )  C_  b
)  /\  x  e.  y )  ->  x  e.  A )
60 pm3.22 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F " y
)  C_  b  /\  x  e.  y )  ->  ( x  e.  y  /\  ( F "
y )  C_  b
) )
6160adantll 750 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  ( ( topGen `  ran  (,) )t  A
)  /\  ( F " y )  C_  b
)  /\  x  e.  y )  ->  (
x  e.  y  /\  ( F " y ) 
C_  b ) )
6259, 61jca 554 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ( ( topGen `  ran  (,) )t  A
)  /\  ( F " y )  C_  b
)  /\  x  e.  y )  ->  (
x  e.  A  /\  ( x  e.  y  /\  ( F " y
)  C_  b )
) )
6357, 62impbida 877 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ( (
topGen `  ran  (,) )t  A
)  /\  ( F " y )  C_  b
)  ->  ( (
x  e.  A  /\  ( x  e.  y  /\  ( F " y
)  C_  b )
)  <->  x  e.  y
) )
6463abbidv 2741 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ( (
topGen `  ran  (,) )t  A
)  /\  ( F " y )  C_  b
)  ->  { x  |  ( x  e.  A  /\  ( x  e.  y  /\  ( F " y )  C_  b ) ) }  =  { x  |  x  e.  y } )
65 df-rab 2921 . . . . . . . . . . . . . 14  |-  { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) }  =  { x  |  ( x  e.  A  /\  ( x  e.  y  /\  ( F "
y )  C_  b
) ) }
66 cvjust 2617 . . . . . . . . . . . . . 14  |-  y  =  { x  |  x  e.  y }
6764, 65, 663eqtr4g 2681 . . . . . . . . . . . . 13  |-  ( ( y  e.  ( (
topGen `  ran  (,) )t  A
)  /\  ( F " y )  C_  b
)  ->  { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) }  =  y )
68 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  y  /\  ( F " y ) 
C_  b )  -> 
( F " y
)  C_  b )
6968con3i 150 . . . . . . . . . . . . . . . 16  |-  ( -.  ( F " y
)  C_  b  ->  -.  ( x  e.  y  /\  ( F "
y )  C_  b
) )
7069ralrimivw 2967 . . . . . . . . . . . . . . 15  |-  ( -.  ( F " y
)  C_  b  ->  A. x  e.  A  -.  ( x  e.  y  /\  ( F " y
)  C_  b )
)
71 rabeq0 3957 . . . . . . . . . . . . . . 15  |-  ( { x  e.  A  | 
( x  e.  y  /\  ( F "
y )  C_  b
) }  =  (/)  <->  A. x  e.  A  -.  ( x  e.  y  /\  ( F " y
)  C_  b )
)
7270, 71sylibr 224 . . . . . . . . . . . . . 14  |-  ( -.  ( F " y
)  C_  b  ->  { x  e.  A  | 
( x  e.  y  /\  ( F "
y )  C_  b
) }  =  (/) )
7372adantl 482 . . . . . . . . . . . . 13  |-  ( ( y  e.  ( (
topGen `  ran  (,) )t  A
)  /\  -.  ( F " y )  C_  b )  ->  { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) }  =  (/) )
7455, 56, 67, 73ifbothda 4123 . . . . . . . . . . . 12  |-  ( y  e.  ( ( topGen ` 
ran  (,) )t  A )  ->  { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) }  =  if ( ( F " y ) 
C_  b ,  y ,  (/) ) )
7574iuneq2i 4539 . . . . . . . . . . 11  |-  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) }  =  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) if ( ( F " y
)  C_  b , 
y ,  (/) )
76 retop 22565 . . . . . . . . . . . . . 14  |-  ( topGen ` 
ran  (,) )  e.  Top
77 resttop 20964 . . . . . . . . . . . . . 14  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  A  e. 
dom  vol )  ->  (
( topGen `  ran  (,) )t  A
)  e.  Top )
7876, 77mpan 706 . . . . . . . . . . . . 13  |-  ( A  e.  dom  vol  ->  ( ( topGen `  ran  (,) )t  A
)  e.  Top )
79 0opn 20709 . . . . . . . . . . . . . . . 16  |-  ( ( ( topGen `  ran  (,) )t  A
)  e.  Top  ->  (/)  e.  ( ( topGen `  ran  (,) )t  A ) )
8078, 79syl 17 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom  vol  ->  (/)  e.  ( ( topGen `  ran  (,) )t  A ) )
81 ifcl 4130 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ( (
topGen `  ran  (,) )t  A
)  /\  (/)  e.  ( ( topGen `  ran  (,) )t  A
) )  ->  if ( ( F "
y )  C_  b ,  y ,  (/) )  e.  ( ( topGen `
 ran  (,) )t  A
) )
8281ancoms 469 . . . . . . . . . . . . . . 15  |-  ( (
(/)  e.  ( ( topGen `
 ran  (,) )t  A
)  /\  y  e.  ( ( topGen `  ran  (,) )t  A ) )  ->  if ( ( F "
y )  C_  b ,  y ,  (/) )  e.  ( ( topGen `
 ran  (,) )t  A
) )
8380, 82sylan 488 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  vol  /\  y  e.  ( (
topGen `  ran  (,) )t  A
) )  ->  if ( ( F "
y )  C_  b ,  y ,  (/) )  e.  ( ( topGen `
 ran  (,) )t  A
) )
8483ralrimiva 2966 . . . . . . . . . . . . 13  |-  ( A  e.  dom  vol  ->  A. y  e.  ( (
topGen `  ran  (,) )t  A
) if ( ( F " y ) 
C_  b ,  y ,  (/) )  e.  ( ( topGen `  ran  (,) )t  A
) )
85 iunopn 20703 . . . . . . . . . . . . 13  |-  ( ( ( ( topGen `  ran  (,) )t  A )  e.  Top  /\ 
A. y  e.  ( ( topGen `  ran  (,) )t  A
) if ( ( F " y ) 
C_  b ,  y ,  (/) )  e.  ( ( topGen `  ran  (,) )t  A
) )  ->  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) if ( ( F " y
)  C_  b , 
y ,  (/) )  e.  ( ( topGen `  ran  (,) )t  A ) )
8678, 84, 85syl2anc 693 . . . . . . . . . . . 12  |-  ( A  e.  dom  vol  ->  U_ y  e.  ( (
topGen `  ran  (,) )t  A
) if ( ( F " y ) 
C_  b ,  y ,  (/) )  e.  ( ( topGen `  ran  (,) )t  A
) )
87 eqid 2622 . . . . . . . . . . . . 13  |-  ( (
topGen `  ran  (,) )t  A
)  =  ( (
topGen `  ran  (,) )t  A
)
8887subopnmbl 23372 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  vol  /\ 
U_ y  e.  ( ( topGen `  ran  (,) )t  A
) if ( ( F " y ) 
C_  b ,  y ,  (/) )  e.  ( ( topGen `  ran  (,) )t  A
) )  ->  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) if ( ( F " y
)  C_  b , 
y ,  (/) )  e. 
dom  vol )
8986, 88mpdan 702 . . . . . . . . . . 11  |-  ( A  e.  dom  vol  ->  U_ y  e.  ( (
topGen `  ran  (,) )t  A
) if ( ( F " y ) 
C_  b ,  y ,  (/) )  e.  dom  vol )
9075, 89syl5eqel 2705 . . . . . . . . . 10  |-  ( A  e.  dom  vol  ->  U_ y  e.  ( (
topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  e.  dom  vol )
9190adantr 481 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  ->  U_ y  e.  (
( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  e.  dom  vol )
92 difss 3737 . . . . . . . . . . . . 13  |-  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  C_  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) }
93 ssrab2 3687 . . . . . . . . . . . . . . 15  |-  { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
C_  A
9493rgenw 2924 . . . . . . . . . . . . . 14  |-  A. y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
C_  A
95 iunss 4561 . . . . . . . . . . . . . 14  |-  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  C_  A 
<-> 
A. y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  C_  A )
9694, 95mpbir 221 . . . . . . . . . . . . 13  |-  U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
C_  A
9792, 96sstri 3612 . . . . . . . . . . . 12  |-  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  C_  A
98 mblss 23299 . . . . . . . . . . . 12  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
9997, 98syl5ss 3614 . . . . . . . . . . 11  |-  ( A  e.  dom  vol  ->  (
U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  C_  RR )
10099adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  C_  RR )
101 ssdif 3745 . . . . . . . . . . . . . 14  |-  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  C_  A  ->  ( U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
\  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) } ) 
C_  ( A  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } ) )
10296, 101ax-mp 5 . . . . . . . . . . . . 13  |-  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  C_  ( A  \  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) } )
103 ovex 6678 . . . . . . . . . . . . . . . . . . . . 21  |-  ( RR 
^m  A )  e. 
_V
104103rabex 4813 . . . . . . . . . . . . . . . . . . . 20  |-  { f  e.  ( RR  ^m  A )  |  A. b  e.  ( topGen ` 
ran  (,) ) ( ( f `  x )  e.  b  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  (
f " y ) 
C_  b ) ) }  e.  _V
105 eqid 2622 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  A  |->  { f  e.  ( RR  ^m  A )  |  A. b  e.  ( topGen ` 
ran  (,) ) ( ( f `  x )  e.  b  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  (
f " y ) 
C_  b ) ) } )  =  ( x  e.  A  |->  { f  e.  ( RR 
^m  A )  | 
A. b  e.  (
topGen `  ran  (,) )
( ( f `  x )  e.  b  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( x  e.  y  /\  ( f
" y )  C_  b ) ) } )
106104, 105fnmpti 6022 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  A  |->  { f  e.  ( RR  ^m  A )  |  A. b  e.  ( topGen ` 
ran  (,) ) ( ( f `  x )  e.  b  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  (
f " y ) 
C_  b ) ) } )  Fn  A
107 retopon 22567 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
108 resttopon 20965 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  A  C_  RR )  ->  ( ( topGen ` 
ran  (,) )t  A )  e.  (TopOn `  A ) )
109107, 98, 108sylancr 695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  dom  vol  ->  ( ( topGen `  ran  (,) )t  A
)  e.  (TopOn `  A ) )
110 cnpfval 21038 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( topGen `  ran  (,) )t  A )  e.  (TopOn `  A )  /\  ( topGen `
 ran  (,) )  e.  (TopOn `  RR )
)  ->  ( (
( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  =  ( x  e.  A  |->  { f  e.  ( RR  ^m  A )  |  A. b  e.  ( topGen `  ran  (,) )
( ( f `  x )  e.  b  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( x  e.  y  /\  ( f
" y )  C_  b ) ) } ) )
111109, 107, 110sylancl 694 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  e.  dom  vol  ->  ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  =  ( x  e.  A  |->  { f  e.  ( RR  ^m  A )  |  A. b  e.  ( topGen ` 
ran  (,) ) ( ( f `  x )  e.  b  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  (
f " y ) 
C_  b ) ) } ) )
112111fneq1d 5981 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  dom  vol  ->  ( ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  Fn  A  <->  ( x  e.  A  |->  { f  e.  ( RR  ^m  A )  |  A. b  e.  ( topGen ` 
ran  (,) ) ( ( f `  x )  e.  b  ->  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( x  e.  y  /\  (
f " y ) 
C_  b ) ) } )  Fn  A
) )
113106, 112mpbiri 248 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  dom  vol  ->  ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  Fn  A )
114 elpreima 6337 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  Fn  A  -> 
( x  e.  ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) "
(  _E  " { F } ) )  <->  ( x  e.  A  /\  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  e.  (  _E  " { F } ) ) ) )
115113, 114syl 17 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  dom  vol  ->  ( x  e.  ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) " (  _E  " { F } ) )  <->  ( x  e.  A  /\  ( ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  e.  (  _E  " { F } ) ) ) )
116 rele 5250 . . . . . . . . . . . . . . . . . . . 20  |-  Rel  _E
117 elrelimasn 5489 . . . . . . . . . . . . . . . . . . . 20  |-  ( Rel 
_E  ->  ( ( ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  e.  (  _E  " { F } )  <->  F  _E  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) ) )
118116, 117ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  e.  (  _E  " { F } )  <->  F  _E  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) )
119 fvex 6201 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  e.  _V
120119epelc 5031 . . . . . . . . . . . . . . . . . . 19  |-  ( F  _E  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  <->  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) )
121118, 120bitr2i 265 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  <->  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  e.  (  _E  " { F } ) )
122121anbi2i 730 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  /\  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )
)  <->  ( x  e.  A  /\  ( ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  e.  (  _E  " { F } ) ) )
123115, 122syl6rbbr 279 . . . . . . . . . . . . . . . 16  |-  ( A  e.  dom  vol  ->  ( ( x  e.  A  /\  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )
)  <->  x  e.  ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) "
(  _E  " { F } ) ) ) )
124123abbidv 2741 . . . . . . . . . . . . . . 15  |-  ( A  e.  dom  vol  ->  { x  |  ( x  e.  A  /\  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) ) }  =  { x  |  x  e.  ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) " (  _E  " { F } ) ) } )
125 df-rab 2921 . . . . . . . . . . . . . . 15  |-  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) }  =  { x  |  (
x  e.  A  /\  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )
) }
126 imaco 5640 . . . . . . . . . . . . . . . 16  |-  ( ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } )  =  ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) "
(  _E  " { F } ) )
127 abid2 2745 . . . . . . . . . . . . . . . 16  |-  { x  |  x  e.  ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) "
(  _E  " { F } ) ) }  =  ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) " (  _E  " { F } ) )
128126, 127eqtr4i 2647 . . . . . . . . . . . . . . 15  |-  ( ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } )  =  {
x  |  x  e.  ( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) "
(  _E  " { F } ) ) }
129124, 125, 1283eqtr4g 2681 . . . . . . . . . . . . . 14  |-  ( A  e.  dom  vol  ->  { x  e.  A  |  F  e.  ( (
( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) }  =  ( ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) )
130129difeq2d 3728 . . . . . . . . . . . . 13  |-  ( A  e.  dom  vol  ->  ( A  \  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) } )  =  ( A  \ 
( ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )
131102, 130syl5sseq 3653 . . . . . . . . . . . 12  |-  ( A  e.  dom  vol  ->  (
U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  C_  ( A  \  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )
132 difss 3737 . . . . . . . . . . . . 13  |-  ( A 
\  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  C_  A
133132, 98syl5ss 3614 . . . . . . . . . . . 12  |-  ( A  e.  dom  vol  ->  ( A  \  ( ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) )  C_  RR )
134131, 133jca 554 . . . . . . . . . . 11  |-  ( A  e.  dom  vol  ->  ( ( U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
\  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) } ) 
C_  ( A  \ 
( ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  /\  ( A 
\  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  C_  RR )
)
135 ovolssnul 23255 . . . . . . . . . . . 12  |-  ( ( ( U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
\  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) } ) 
C_  ( A  \ 
( ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  /\  ( A 
\  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  C_  RR  /\  ( vol* `  ( A 
\  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )  =  0 )  ->  ( vol* `  ( U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
\  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) } ) )  =  0 )
1361353expa 1265 . . . . . . . . . . 11  |-  ( ( ( ( U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
\  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) } ) 
C_  ( A  \ 
( ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  /\  ( A 
\  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  C_  RR )  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( vol* `  ( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } ) )  =  0 )
137134, 136sylan 488 . . . . . . . . . 10  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( vol* `  ( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } ) )  =  0 )
138 nulmbl 23303 . . . . . . . . . 10  |-  ( ( ( U_ y  e.  ( ( topGen `  ran  (,) )t  A ) { x  e.  A  |  (
x  e.  y  /\  ( F " y ) 
C_  b ) } 
\  { x  e.  A  |  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) } ) 
C_  RR  /\  ( vol* `  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } ) )  =  0 )  ->  ( U_ y  e.  (
( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  e.  dom  vol )
139100, 137, 138syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  e.  dom  vol )
140 difmbl 23311 . . . . . . . . 9  |-  ( (
U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  e.  dom  vol  /\  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } )  e.  dom  vol )  ->  ( U_ y  e.  ( ( topGen `
 ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \ 
( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } ) )  e. 
dom  vol )
14191, 139, 140syl2anc 693 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \ 
( U_ y  e.  ( ( topGen `  ran  (,) )t  A
) { x  e.  A  |  ( x  e.  y  /\  ( F " y )  C_  b ) }  \  { x  e.  A  |  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x ) } ) )  e. 
dom  vol )
14254, 141syl5eqelr 2706 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  ->  { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  e.  dom  vol )
143 ssrab2 3687 . . . . . . . . . 10  |-  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) }  C_  A
144143, 98syl5ss 3614 . . . . . . . . 9  |-  ( A  e.  dom  vol  ->  { x  e.  A  | 
( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  C_  RR )
145144adantr 481 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  ->  { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  C_  RR )
146126eleq2i 2693 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } )  <-> 
x  e.  ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) " (  _E  " { F } ) ) )
147 ibar 525 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  A  ->  (
( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  e.  (  _E  " { F } )  <->  ( x  e.  A  /\  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  e.  (  _E  " { F } ) ) ) )
148121, 147syl5rbb 273 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  A  ->  (
( x  e.  A  /\  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  e.  (  _E  " { F } ) )  <->  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) ) )
149115, 148sylan9bb 736 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  dom  vol  /\  x  e.  A )  ->  ( x  e.  ( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) "
(  _E  " { F } ) )  <->  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x ) ) )
150146, 149syl5rbb 273 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  dom  vol  /\  x  e.  A )  ->  ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  <->  x  e.  ( ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )
151150notbid 308 . . . . . . . . . . . . . 14  |-  ( ( A  e.  dom  vol  /\  x  e.  A )  ->  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  <->  -.  x  e.  ( ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )
152151biimpd 219 . . . . . . . . . . . . 13  |-  ( ( A  e.  dom  vol  /\  x  e.  A )  ->  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  ->  -.  x  e.  ( ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )
153152adantrd 484 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  vol  /\  x  e.  A )  ->  ( ( -.  F  e.  ( ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b )  ->  -.  x  e.  ( ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )
154153ss2rabdv 3683 . . . . . . . . . . 11  |-  ( A  e.  dom  vol  ->  { x  e.  A  | 
( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  C_  { x  e.  A  |  -.  x  e.  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) } )
155 dfdif2 3583 . . . . . . . . . . 11  |-  ( A 
\  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  =  { x  e.  A  |  -.  x  e.  ( ( `' ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) }
156154, 155syl6sseqr 3652 . . . . . . . . . 10  |-  ( A  e.  dom  vol  ->  { x  e.  A  | 
( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  C_  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )
157156, 133jca 554 . . . . . . . . 9  |-  ( A  e.  dom  vol  ->  ( { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  C_  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) )  /\  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) )  C_  RR ) )
158 ovolssnul 23255 . . . . . . . . . 10  |-  ( ( { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  C_  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) )  /\  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) )  C_  RR  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( vol* `  { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) } )  =  0 )
1591583expa 1265 . . . . . . . . 9  |-  ( ( ( { x  e.  A  |  ( -.  F  e.  ( ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) }  C_  ( A  \  ( ( `' ( ( ( topGen `  ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  /\  ( A 
\  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) )  C_  RR )  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( vol* `  { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) } )  =  0 )
160157, 159sylan 488 . . . . . . . 8  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( vol* `  { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) } )  =  0 )
161 nulmbl 23303 . . . . . . . 8  |-  ( ( { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  C_  RR  /\  ( vol* `  { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) } )  =  0 )  ->  { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  e.  dom  vol )
162145, 160, 161syl2anc 693 . . . . . . 7  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  ->  { x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  e.  dom  vol )
163 unmbl 23305 . . . . . . 7  |-  ( ( { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  e.  dom  vol  /\ 
{ x  e.  A  |  ( -.  F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  ( F `  x )  e.  b ) }  e.  dom  vol )  ->  ( { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  u.  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) } )  e.  dom  vol )
164142, 162, 163syl2anc 693 . . . . . 6  |-  ( ( A  e.  dom  vol  /\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  -> 
( { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  u.  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) } )  e.  dom  vol )
1651643adant1 1079 . . . . 5  |-  ( ( F : A --> RR  /\  A  e.  dom  vol  /\  ( vol* `  ( A  \  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )  =  0 )  ->  ( {
x  e.  A  |  E. y  e.  (
( topGen `  ran  (,) )t  A
) ( F  e.  ( ( ( (
topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  u.  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) } )  e.  dom  vol )
166165adantr 481 . . . 4  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol 
/\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  /\  b  e.  ran  (,) )  ->  ( { x  e.  A  |  E. y  e.  ( ( topGen `  ran  (,) )t  A ) ( F  e.  ( ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) ) `  x )  /\  (
x  e.  y  /\  ( F " y ) 
C_  b ) ) }  u.  { x  e.  A  |  ( -.  F  e.  (
( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
) `  x )  /\  ( F `  x
)  e.  b ) } )  e.  dom  vol )
16745, 166eqeltrd 2701 . . 3  |-  ( ( ( F : A --> RR  /\  A  e.  dom  vol 
/\  ( vol* `  ( A  \  (
( `' ( ( ( topGen `  ran  (,) )t  A
)  CnP  ( topGen ` 
ran  (,) ) )  o.  _E  ) " { F } ) ) )  =  0 )  /\  b  e.  ran  (,) )  ->  ( `' F "
b )  e.  dom  vol )
168167ralrimiva 2966 . 2  |-  ( ( F : A --> RR  /\  A  e.  dom  vol  /\  ( vol* `  ( A  \  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )  =  0 )  ->  A. b  e.  ran  (,) ( `' F " b )  e.  dom  vol )
169 ismbf 23397 . . 3  |-  ( F : A --> RR  ->  ( F  e. MblFn  <->  A. b  e.  ran  (,) ( `' F "
b )  e.  dom  vol ) )
1701693ad2ant1 1082 . 2  |-  ( ( F : A --> RR  /\  A  e.  dom  vol  /\  ( vol* `  ( A  \  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )  =  0 )  ->  ( F  e. MblFn  <->  A. b  e.  ran  (,) ( `' F "
b )  e.  dom  vol ) )
171168, 170mpbird 247 1  |-  ( ( F : A --> RR  /\  A  e.  dom  vol  /\  ( vol* `  ( A  \  ( ( `' ( ( ( topGen ` 
ran  (,) )t  A )  CnP  ( topGen `
 ran  (,) )
)  o.  _E  ) " { F } ) ) )  =  0 )  ->  F  e. MblFn )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _E cep 5028   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   RRcr 9935   0cc0 9936   (,)cioo 12175   ↾t crest 16081   topGenctg 16098   Topctop 20698  TopOnctopon 20715   TopBasesctb 20749    CnP ccnp 21029   vol*covol 23231   volcvol 23232  MblFncmbf 23383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cnp 21032  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator