| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldif | Structured version Visualization version Unicode version | ||
| Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| eldif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | elex 3212 |
. . 3
| |
| 3 | 2 | adantr 481 |
. 2
|
| 4 | eleq1 2689 |
. . . 4
| |
| 5 | eleq1 2689 |
. . . . 5
| |
| 6 | 5 | notbid 308 |
. . . 4
|
| 7 | 4, 6 | anbi12d 747 |
. . 3
|
| 8 | df-dif 3577 |
. . 3
| |
| 9 | 7, 8 | elab2g 3353 |
. 2
|
| 10 | 1, 3, 9 | pm5.21nii 368 |
1
|
| Copyright terms: Public domain | W3C validator |