MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unvdif Structured version   Visualization version   Unicode version

Theorem unvdif 4042
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unvdif  |-  ( A  u.  ( _V  \  A ) )  =  _V

Proof of Theorem unvdif
StepHypRef Expression
1 dfun3 3865 . 2  |-  ( A  u.  ( _V  \  A ) )  =  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  ( _V  \  A
) ) ) )
2 disjdif 4040 . . 3  |-  ( ( _V  \  A )  i^i  ( _V  \ 
( _V  \  A
) ) )  =  (/)
32difeq2i 3725 . 2  |-  ( _V 
\  ( ( _V 
\  A )  i^i  ( _V  \  ( _V  \  A ) ) ) )  =  ( _V  \  (/) )
4 dif0 3950 . 2  |-  ( _V 
\  (/) )  =  _V
51, 3, 43eqtri 2648 1  |-  ( A  u.  ( _V  \  A ) )  =  _V
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  undif1  4043  dfif4  4101  hashfxnn0  13124  hashfOLD  13126  fullfunfnv  32053  hfext  32290
  Copyright terms: Public domain W3C validator