Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaffval Structured version   Visualization version   Unicode version

Theorem diaffval 36319
Description: The partial isomorphism A for a lattice  K. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b  |-  B  =  ( Base `  K
)
diaval.l  |-  .<_  =  ( le `  K )
diaval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
diaffval  |-  ( K  e.  V  ->  ( DIsoA `  K )  =  ( w  e.  H  |->  ( x  e.  {
y  e.  B  | 
y  .<_  w }  |->  { f  e.  ( (
LTrn `  K ) `  w )  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) ) )
Distinct variable groups:    x, w, y,  .<_    w, B, x, y   
w, H    w, f, x, y, K
Allowed substitution hints:    B( f)    H( x, y, f)    .<_ ( f)    V( x, y, w, f)

Proof of Theorem diaffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 diaval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2674 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
6 diaval.b . . . . . . 7  |-  B  =  ( Base `  K
)
75, 6syl6eqr 2674 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  B )
8 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
9 diaval.l . . . . . . . 8  |-  .<_  =  ( le `  K )
108, 9syl6eqr 2674 . . . . . . 7  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1110breqd 4664 . . . . . 6  |-  ( k  =  K  ->  (
y ( le `  k ) w  <->  y  .<_  w ) )
127, 11rabeqbidv 3195 . . . . 5  |-  ( k  =  K  ->  { y  e.  ( Base `  k
)  |  y ( le `  k ) w }  =  {
y  e.  B  | 
y  .<_  w } )
13 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
1413fveq1d 6193 . . . . . 6  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
15 fveq2 6191 . . . . . . . . 9  |-  ( k  =  K  ->  ( trL `  k )  =  ( trL `  K
) )
1615fveq1d 6193 . . . . . . . 8  |-  ( k  =  K  ->  (
( trL `  k
) `  w )  =  ( ( trL `  K ) `  w
) )
1716fveq1d 6193 . . . . . . 7  |-  ( k  =  K  ->  (
( ( trL `  k
) `  w ) `  f )  =  ( ( ( trL `  K
) `  w ) `  f ) )
18 eqidd 2623 . . . . . . 7  |-  ( k  =  K  ->  x  =  x )
1917, 10, 18breq123d 4667 . . . . . 6  |-  ( k  =  K  ->  (
( ( ( trL `  k ) `  w
) `  f )
( le `  k
) x  <->  ( (
( trL `  K
) `  w ) `  f )  .<_  x ) )
2014, 19rabeqbidv 3195 . . . . 5  |-  ( k  =  K  ->  { f  e.  ( ( LTrn `  k ) `  w
)  |  ( ( ( trL `  k
) `  w ) `  f ) ( le
`  k ) x }  =  { f  e.  ( ( LTrn `  K ) `  w
)  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
)
2112, 20mpteq12dv 4733 . . . 4  |-  ( k  =  K  ->  (
x  e.  { y  e.  ( Base `  k
)  |  y ( le `  k ) w }  |->  { f  e.  ( ( LTrn `  k ) `  w
)  |  ( ( ( trL `  k
) `  w ) `  f ) ( le
`  k ) x } )  =  ( x  e.  { y  e.  B  |  y 
.<_  w }  |->  { f  e.  ( ( LTrn `  K ) `  w
)  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) )
224, 21mpteq12dv 4733 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  { y  e.  ( Base `  k
)  |  y ( le `  k ) w }  |->  { f  e.  ( ( LTrn `  k ) `  w
)  |  ( ( ( trL `  k
) `  w ) `  f ) ( le
`  k ) x } ) )  =  ( w  e.  H  |->  ( x  e.  {
y  e.  B  | 
y  .<_  w }  |->  { f  e.  ( (
LTrn `  K ) `  w )  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) ) )
23 df-disoa 36318 . . 3  |-  DIsoA  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  { y  e.  ( Base `  k
)  |  y ( le `  k ) w }  |->  { f  e.  ( ( LTrn `  k ) `  w
)  |  ( ( ( trL `  k
) `  w ) `  f ) ( le
`  k ) x } ) ) )
24 fvex 6201 . . . . 5  |-  ( LHyp `  K )  e.  _V
253, 24eqeltri 2697 . . . 4  |-  H  e. 
_V
2625mptex 6486 . . 3  |-  ( w  e.  H  |->  ( x  e.  { y  e.  B  |  y  .<_  w }  |->  { f  e.  ( ( LTrn `  K ) `  w
)  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) )  e.  _V
2722, 23, 26fvmpt 6282 . 2  |-  ( K  e.  _V  ->  ( DIsoA `  K )  =  ( w  e.  H  |->  ( x  e.  {
y  e.  B  | 
y  .<_  w }  |->  { f  e.  ( (
LTrn `  K ) `  w )  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) ) )
281, 27syl 17 1  |-  ( K  e.  V  ->  ( DIsoA `  K )  =  ( w  e.  H  |->  ( x  e.  {
y  e.  B  | 
y  .<_  w }  |->  { f  e.  ( (
LTrn `  K ) `  w )  |  ( ( ( trL `  K
) `  w ) `  f )  .<_  x }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   Basecbs 15857   lecple 15948   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   DIsoAcdia 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-disoa 36318
This theorem is referenced by:  diafval  36320
  Copyright terms: Public domain W3C validator