Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjnf Structured version   Visualization version   Unicode version

Theorem disjnf 29384
Description: In case  x is not free in  B, disjointness is not so interesting since it reduces to cases where  A is a singleton. (Google Groups discussion with Peter Mazsa.) (Contributed by Thierry Arnoux, 26-Jul-2018.)
Assertion
Ref Expression
disjnf  |-  (Disj  x  e.  A  B  <->  ( B  =  (/)  \/  E* x  x  e.  A )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem disjnf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 inidm 3822 . . . 4  |-  ( B  i^i  B )  =  B
21eqeq1i 2627 . . 3  |-  ( ( B  i^i  B )  =  (/)  <->  B  =  (/) )
32orbi1i 542 . 2  |-  ( ( ( B  i^i  B
)  =  (/)  \/  A. x  e.  A  A. y  e.  A  x  =  y )  <->  ( B  =  (/)  \/  A. x  e.  A  A. y  e.  A  x  =  y ) )
4 eqidd 2623 . . . 4  |-  ( x  =  y  ->  B  =  B )
54disjor 4634 . . 3  |-  (Disj  x  e.  A  B  <->  A. x  e.  A  A. y  e.  A  ( x  =  y  \/  ( B  i^i  B )  =  (/) ) )
6 orcom 402 . . . . . 6  |-  ( ( x  =  y  \/  ( B  i^i  B
)  =  (/) )  <->  ( ( B  i^i  B )  =  (/)  \/  x  =  y ) )
76ralbii 2980 . . . . 5  |-  ( A. y  e.  A  (
x  =  y  \/  ( B  i^i  B
)  =  (/) )  <->  A. y  e.  A  ( ( B  i^i  B )  =  (/)  \/  x  =  y ) )
8 r19.32v 3083 . . . . 5  |-  ( A. y  e.  A  (
( B  i^i  B
)  =  (/)  \/  x  =  y )  <->  ( ( B  i^i  B )  =  (/)  \/  A. y  e.  A  x  =  y ) )
97, 8bitri 264 . . . 4  |-  ( A. y  e.  A  (
x  =  y  \/  ( B  i^i  B
)  =  (/) )  <->  ( ( B  i^i  B )  =  (/)  \/  A. y  e.  A  x  =  y ) )
109ralbii 2980 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
x  =  y  \/  ( B  i^i  B
)  =  (/) )  <->  A. x  e.  A  ( ( B  i^i  B )  =  (/)  \/  A. y  e.  A  x  =  y ) )
11 r19.32v 3083 . . 3  |-  ( A. x  e.  A  (
( B  i^i  B
)  =  (/)  \/  A. y  e.  A  x  =  y )  <->  ( ( B  i^i  B )  =  (/)  \/  A. x  e.  A  A. y  e.  A  x  =  y ) )
125, 10, 113bitri 286 . 2  |-  (Disj  x  e.  A  B  <->  ( ( B  i^i  B )  =  (/)  \/  A. x  e.  A  A. y  e.  A  x  =  y ) )
13 moel 29323 . . 3  |-  ( E* x  x  e.  A  <->  A. x  e.  A  A. y  e.  A  x  =  y )
1413orbi2i 541 . 2  |-  ( ( B  =  (/)  \/  E* x  x  e.  A
)  <->  ( B  =  (/)  \/  A. x  e.  A  A. y  e.  A  x  =  y ) )
153, 12, 143bitr4i 292 1  |-  (Disj  x  e.  A  B  <->  ( B  =  (/)  \/  E* x  x  e.  A )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990   E*wmo 2471   A.wral 2912    i^i cin 3573   (/)c0 3915  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916  df-disj 4621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator