| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjorf | Structured version Visualization version Unicode version | ||
| Description: Two ways to say that a
collection |
| Ref | Expression |
|---|---|
| disjorf.1 |
|
| disjorf.2 |
|
| disjorf.3 |
|
| Ref | Expression |
|---|---|
| disjorf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disj 4621 |
. 2
| |
| 2 | ralcom4 3224 |
. . 3
| |
| 3 | orcom 402 |
. . . . . . 7
| |
| 4 | df-or 385 |
. . . . . . 7
| |
| 5 | neq0 3930 |
. . . . . . . . . 10
| |
| 6 | elin 3796 |
. . . . . . . . . . 11
| |
| 7 | 6 | exbii 1774 |
. . . . . . . . . 10
|
| 8 | 5, 7 | bitri 264 |
. . . . . . . . 9
|
| 9 | 8 | imbi1i 339 |
. . . . . . . 8
|
| 10 | 19.23v 1902 |
. . . . . . . 8
| |
| 11 | 9, 10 | bitr4i 267 |
. . . . . . 7
|
| 12 | 3, 4, 11 | 3bitri 286 |
. . . . . 6
|
| 13 | 12 | ralbii 2980 |
. . . . 5
|
| 14 | ralcom4 3224 |
. . . . 5
| |
| 15 | 13, 14 | bitri 264 |
. . . 4
|
| 16 | 15 | ralbii 2980 |
. . 3
|
| 17 | disjorf.1 |
. . . . 5
| |
| 18 | disjorf.2 |
. . . . 5
| |
| 19 | nfv 1843 |
. . . . 5
| |
| 20 | disjorf.3 |
. . . . . 6
| |
| 21 | 20 | eleq2d 2687 |
. . . . 5
|
| 22 | 17, 18, 19, 21 | rmo4f 29337 |
. . . 4
|
| 23 | 22 | albii 1747 |
. . 3
|
| 24 | 2, 16, 23 | 3bitr4i 292 |
. 2
|
| 25 | 1, 24 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rmo 2920 df-v 3202 df-dif 3577 df-in 3581 df-nul 3916 df-disj 4621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |