HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdi Structured version   Visualization version   Unicode version

Theorem dmdi 29161
Description: Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdi  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( A  MH*  B  /\  B  C_  C ) )  ->  ( ( C  i^i  A )  vH  B )  =  ( C  i^i  ( A  vH  B ) ) )

Proof of Theorem dmdi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dmdbr 29158 . . . . 5  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  <->  A. x  e.  CH  ( B  C_  x  ->  (
( x  i^i  A
)  vH  B )  =  ( x  i^i  ( A  vH  B
) ) ) ) )
21biimpd 219 . . . 4  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  MH*  B  ->  A. x  e.  CH  ( B  C_  x  -> 
( ( x  i^i 
A )  vH  B
)  =  ( x  i^i  ( A  vH  B ) ) ) ) )
3 sseq2 3627 . . . . . 6  |-  ( x  =  C  ->  ( B  C_  x  <->  B  C_  C
) )
4 ineq1 3807 . . . . . . . 8  |-  ( x  =  C  ->  (
x  i^i  A )  =  ( C  i^i  A ) )
54oveq1d 6665 . . . . . . 7  |-  ( x  =  C  ->  (
( x  i^i  A
)  vH  B )  =  ( ( C  i^i  A )  vH  B ) )
6 ineq1 3807 . . . . . . 7  |-  ( x  =  C  ->  (
x  i^i  ( A  vH  B ) )  =  ( C  i^i  ( A  vH  B ) ) )
75, 6eqeq12d 2637 . . . . . 6  |-  ( x  =  C  ->  (
( ( x  i^i 
A )  vH  B
)  =  ( x  i^i  ( A  vH  B ) )  <->  ( ( C  i^i  A )  vH  B )  =  ( C  i^i  ( A  vH  B ) ) ) )
83, 7imbi12d 334 . . . . 5  |-  ( x  =  C  ->  (
( B  C_  x  ->  ( ( x  i^i 
A )  vH  B
)  =  ( x  i^i  ( A  vH  B ) ) )  <-> 
( B  C_  C  ->  ( ( C  i^i  A )  vH  B )  =  ( C  i^i  ( A  vH  B ) ) ) ) )
98rspcv 3305 . . . 4  |-  ( C  e.  CH  ->  ( A. x  e.  CH  ( B  C_  x  ->  (
( x  i^i  A
)  vH  B )  =  ( x  i^i  ( A  vH  B
) ) )  -> 
( B  C_  C  ->  ( ( C  i^i  A )  vH  B )  =  ( C  i^i  ( A  vH  B ) ) ) ) )
102, 9sylan9 689 . . 3  |-  ( ( ( A  e.  CH  /\  B  e.  CH )  /\  C  e.  CH )  ->  ( A  MH*  B  ->  ( B  C_  C  ->  ( ( C  i^i  A )  vH  B )  =  ( C  i^i  ( A  vH  B ) ) ) ) )
11103impa 1259 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  ->  ( A  MH*  B  ->  ( B  C_  C  ->  (
( C  i^i  A
)  vH  B )  =  ( C  i^i  ( A  vH  B ) ) ) ) )
1211imp32 449 1  |-  ( ( ( A  e.  CH  /\  B  e.  CH  /\  C  e.  CH )  /\  ( A  MH*  B  /\  B  C_  C ) )  ->  ( ( C  i^i  A )  vH  B )  =  ( C  i^i  ( A  vH  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   CHcch 27786    vH chj 27790    MH* cdmd 27824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-dmd 29140
This theorem is referenced by:  dmdi2  29163  dmdsl3  29174  csmdsymi  29193  mdsymlem1  29262
  Copyright terms: Public domain W3C validator