| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmrelrnrel | Structured version Visualization version Unicode version | ||
| Description: A relation preserving function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmrelrnrel.x |
|
| dmrelrnrel.y |
|
| dmrelrnrel.i |
|
| dmrelrnrel.b |
|
| dmrelrnrel.c |
|
| dmrelrnrel.r |
|
| Ref | Expression |
|---|---|
| dmrelrnrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 |
. . 3
| |
| 2 | dmrelrnrel.b |
. . 3
| |
| 3 | dmrelrnrel.c |
. . 3
| |
| 4 | 1, 2, 3 | jca31 557 |
. 2
|
| 5 | dmrelrnrel.r |
. 2
| |
| 6 | nfv 1843 |
. . . . 5
| |
| 7 | dmrelrnrel.y |
. . . . . . . 8
| |
| 8 | 7, 6 | nfan 1828 |
. . . . . . 7
|
| 9 | nfv 1843 |
. . . . . . 7
| |
| 10 | 8, 9 | nfan 1828 |
. . . . . 6
|
| 11 | nfv 1843 |
. . . . . 6
| |
| 12 | 10, 11 | nfim 1825 |
. . . . 5
|
| 13 | 6, 12 | nfim 1825 |
. . . 4
|
| 14 | eleq1 2689 |
. . . . . . 7
| |
| 15 | 14 | anbi2d 740 |
. . . . . 6
|
| 16 | breq2 4657 |
. . . . . . 7
| |
| 17 | fveq2 6191 |
. . . . . . . 8
| |
| 18 | 17 | breq2d 4665 |
. . . . . . 7
|
| 19 | 16, 18 | imbi12d 334 |
. . . . . 6
|
| 20 | 15, 19 | imbi12d 334 |
. . . . 5
|
| 21 | 20 | imbi2d 330 |
. . . 4
|
| 22 | dmrelrnrel.x |
. . . . . . . 8
| |
| 23 | nfv 1843 |
. . . . . . . 8
| |
| 24 | 22, 23 | nfan 1828 |
. . . . . . 7
|
| 25 | nfv 1843 |
. . . . . . 7
| |
| 26 | 24, 25 | nfan 1828 |
. . . . . 6
|
| 27 | nfv 1843 |
. . . . . 6
| |
| 28 | 26, 27 | nfim 1825 |
. . . . 5
|
| 29 | eleq1 2689 |
. . . . . . . 8
| |
| 30 | 29 | anbi2d 740 |
. . . . . . 7
|
| 31 | 30 | anbi1d 741 |
. . . . . 6
|
| 32 | breq1 4656 |
. . . . . . 7
| |
| 33 | fveq2 6191 |
. . . . . . . 8
| |
| 34 | 33 | breq1d 4663 |
. . . . . . 7
|
| 35 | 32, 34 | imbi12d 334 |
. . . . . 6
|
| 36 | 31, 35 | imbi12d 334 |
. . . . 5
|
| 37 | dmrelrnrel.i |
. . . . . . 7
| |
| 38 | 37 | r19.21bi 2932 |
. . . . . 6
|
| 39 | 38 | r19.21bi 2932 |
. . . . 5
|
| 40 | 28, 36, 39 | vtoclg1f 3265 |
. . . 4
|
| 41 | 13, 21, 40 | vtoclg1f 3265 |
. . 3
|
| 42 | 3, 2, 41 | sylc 65 |
. 2
|
| 43 | 4, 5, 42 | mp2d 49 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: pimincfltioc 40926 pimincfltioo 40928 |
| Copyright terms: Public domain | W3C validator |