Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  docaffvalN Structured version   Visualization version   Unicode version

Theorem docaffvalN 36410
Description: Subspace orthocomplement for  DVecA partial vector space. (Contributed by NM, 6-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
docaval.j  |-  .\/  =  ( join `  K )
docaval.m  |-  ./\  =  ( meet `  K )
docaval.o  |-  ._|_  =  ( oc `  K )
docaval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
docaffvalN  |-  ( K  e.  V  ->  ( ocA `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( ( LTrn `  K
) `  w )  |->  ( ( ( DIsoA `  K ) `  w
) `  ( (
(  ._|_  `  ( `' ( ( DIsoA `  K
) `  w ) `  |^| { z  e. 
ran  ( ( DIsoA `  K ) `  w
)  |  x  C_  z } ) )  .\/  (  ._|_  `  w )
)  ./\  w )
) ) ) )
Distinct variable groups:    w, H    x, w, z, K
Allowed substitution hints:    H( x, z)    .\/ ( x, z, w)    ./\ ( x, z, w)    ._|_ ( x, z, w)    V( x, z, w)

Proof of Theorem docaffvalN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 docaval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2674 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
65fveq1d 6193 . . . . . 6  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
76pweqd 4163 . . . . 5  |-  ( k  =  K  ->  ~P ( ( LTrn `  k
) `  w )  =  ~P ( ( LTrn `  K ) `  w
) )
8 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( DIsoA `  k )  =  ( DIsoA `  K )
)
98fveq1d 6193 . . . . . 6  |-  ( k  =  K  ->  (
( DIsoA `  k ) `  w )  =  ( ( DIsoA `  K ) `  w ) )
10 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( meet `  k )  =  ( meet `  K
) )
11 docaval.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
1210, 11syl6eqr 2674 . . . . . . 7  |-  ( k  =  K  ->  ( meet `  k )  = 
./\  )
13 fveq2 6191 . . . . . . . . 9  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
14 docaval.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
1513, 14syl6eqr 2674 . . . . . . . 8  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
16 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  K  ->  ( oc `  k )  =  ( oc `  K
) )
17 docaval.o . . . . . . . . . 10  |-  ._|_  =  ( oc `  K )
1816, 17syl6eqr 2674 . . . . . . . . 9  |-  ( k  =  K  ->  ( oc `  k )  = 
._|_  )
199cnveqd 5298 . . . . . . . . . 10  |-  ( k  =  K  ->  `' ( ( DIsoA `  k
) `  w )  =  `' ( ( DIsoA `  K ) `  w
) )
209rneqd 5353 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ran  ( ( DIsoA `  k
) `  w )  =  ran  ( ( DIsoA `  K ) `  w
) )
21 rabeq 3192 . . . . . . . . . . . 12  |-  ( ran  ( ( DIsoA `  k
) `  w )  =  ran  ( ( DIsoA `  K ) `  w
)  ->  { z  e.  ran  ( ( DIsoA `  k ) `  w
)  |  x  C_  z }  =  {
z  e.  ran  (
( DIsoA `  K ) `  w )  |  x 
C_  z } )
2220, 21syl 17 . . . . . . . . . . 11  |-  ( k  =  K  ->  { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z }  =  { z  e.  ran  ( ( DIsoA `  K
) `  w )  |  x  C_  z } )
2322inteqd 4480 . . . . . . . . . 10  |-  ( k  =  K  ->  |^| { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z }  =  |^| { z  e.  ran  ( ( DIsoA `  K
) `  w )  |  x  C_  z } )
2419, 23fveq12d 6197 . . . . . . . . 9  |-  ( k  =  K  ->  ( `' ( ( DIsoA `  k ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z } )  =  ( `' ( ( DIsoA `  K ) `  w ) `  |^| { z  e.  ran  (
( DIsoA `  K ) `  w )  |  x 
C_  z } ) )
2518, 24fveq12d 6197 . . . . . . . 8  |-  ( k  =  K  ->  (
( oc `  k
) `  ( `' ( ( DIsoA `  k
) `  w ) `  |^| { z  e. 
ran  ( ( DIsoA `  k ) `  w
)  |  x  C_  z } ) )  =  (  ._|_  `  ( `' ( ( DIsoA `  K
) `  w ) `  |^| { z  e. 
ran  ( ( DIsoA `  K ) `  w
)  |  x  C_  z } ) ) )
2618fveq1d 6193 . . . . . . . 8  |-  ( k  =  K  ->  (
( oc `  k
) `  w )  =  (  ._|_  `  w
) )
2715, 25, 26oveq123d 6671 . . . . . . 7  |-  ( k  =  K  ->  (
( ( oc `  k ) `  ( `' ( ( DIsoA `  k ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z } ) ) ( join `  k
) ( ( oc
`  k ) `  w ) )  =  ( (  ._|_  `  ( `' ( ( DIsoA `  K ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  K ) `  w )  |  x 
C_  z } ) )  .\/  (  ._|_  `  w ) ) )
28 eqidd 2623 . . . . . . 7  |-  ( k  =  K  ->  w  =  w )
2912, 27, 28oveq123d 6671 . . . . . 6  |-  ( k  =  K  ->  (
( ( ( oc
`  k ) `  ( `' ( ( DIsoA `  k ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z } ) ) ( join `  k
) ( ( oc
`  k ) `  w ) ) (
meet `  k )
w )  =  ( ( (  ._|_  `  ( `' ( ( DIsoA `  K ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  K ) `  w )  |  x 
C_  z } ) )  .\/  (  ._|_  `  w ) )  ./\  w ) )
309, 29fveq12d 6197 . . . . 5  |-  ( k  =  K  ->  (
( ( DIsoA `  k
) `  w ) `  ( ( ( ( oc `  k ) `
 ( `' ( ( DIsoA `  k ) `  w ) `  |^| { z  e.  ran  (
( DIsoA `  k ) `  w )  |  x 
C_  z } ) ) ( join `  k
) ( ( oc
`  k ) `  w ) ) (
meet `  k )
w ) )  =  ( ( ( DIsoA `  K ) `  w
) `  ( (
(  ._|_  `  ( `' ( ( DIsoA `  K
) `  w ) `  |^| { z  e. 
ran  ( ( DIsoA `  K ) `  w
)  |  x  C_  z } ) )  .\/  (  ._|_  `  w )
)  ./\  w )
) )
317, 30mpteq12dv 4733 . . . 4  |-  ( k  =  K  ->  (
x  e.  ~P (
( LTrn `  k ) `  w )  |->  ( ( ( DIsoA `  k ) `  w ) `  (
( ( ( oc
`  k ) `  ( `' ( ( DIsoA `  k ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z } ) ) ( join `  k
) ( ( oc
`  k ) `  w ) ) (
meet `  k )
w ) ) )  =  ( x  e. 
~P ( ( LTrn `  K ) `  w
)  |->  ( ( (
DIsoA `  K ) `  w ) `  (
( (  ._|_  `  ( `' ( ( DIsoA `  K ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  K ) `  w )  |  x 
C_  z } ) )  .\/  (  ._|_  `  w ) )  ./\  w ) ) ) )
324, 31mpteq12dv 4733 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ~P ( (
LTrn `  k ) `  w )  |->  ( ( ( DIsoA `  k ) `  w ) `  (
( ( ( oc
`  k ) `  ( `' ( ( DIsoA `  k ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z } ) ) ( join `  k
) ( ( oc
`  k ) `  w ) ) (
meet `  k )
w ) ) ) )  =  ( w  e.  H  |->  ( x  e.  ~P ( (
LTrn `  K ) `  w )  |->  ( ( ( DIsoA `  K ) `  w ) `  (
( (  ._|_  `  ( `' ( ( DIsoA `  K ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  K ) `  w )  |  x 
C_  z } ) )  .\/  (  ._|_  `  w ) )  ./\  w ) ) ) ) )
33 df-docaN 36409 . . 3  |-  ocA  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ~P (
( LTrn `  k ) `  w )  |->  ( ( ( DIsoA `  k ) `  w ) `  (
( ( ( oc
`  k ) `  ( `' ( ( DIsoA `  k ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  k ) `  w )  |  x 
C_  z } ) ) ( join `  k
) ( ( oc
`  k ) `  w ) ) (
meet `  k )
w ) ) ) ) )
34 fvex 6201 . . . . 5  |-  ( LHyp `  K )  e.  _V
353, 34eqeltri 2697 . . . 4  |-  H  e. 
_V
3635mptex 6486 . . 3  |-  ( w  e.  H  |->  ( x  e.  ~P ( (
LTrn `  K ) `  w )  |->  ( ( ( DIsoA `  K ) `  w ) `  (
( (  ._|_  `  ( `' ( ( DIsoA `  K ) `  w
) `  |^| { z  e.  ran  ( (
DIsoA `  K ) `  w )  |  x 
C_  z } ) )  .\/  (  ._|_  `  w ) )  ./\  w ) ) ) )  e.  _V
3732, 33, 36fvmpt 6282 . 2  |-  ( K  e.  _V  ->  ( ocA `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( ( LTrn `  K
) `  w )  |->  ( ( ( DIsoA `  K ) `  w
) `  ( (
(  ._|_  `  ( `' ( ( DIsoA `  K
) `  w ) `  |^| { z  e. 
ran  ( ( DIsoA `  K ) `  w
)  |  x  C_  z } ) )  .\/  (  ._|_  `  w )
)  ./\  w )
) ) ) )
381, 37syl 17 1  |-  ( K  e.  V  ->  ( ocA `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( ( LTrn `  K
) `  w )  |->  ( ( ( DIsoA `  K ) `  w
) `  ( (
(  ._|_  `  ( `' ( ( DIsoA `  K
) `  w ) `  |^| { z  e. 
ran  ( ( DIsoA `  K ) `  w
)  |  x  C_  z } ) )  .\/  (  ._|_  `  w )
)  ./\  w )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   |^|cint 4475    |-> cmpt 4729   `'ccnv 5113   ran crn 5115   ` cfv 5888  (class class class)co 6650   occoc 15949   joincjn 16944   meetcmee 16945   LHypclh 35270   LTrncltrn 35387   DIsoAcdia 36317   ocAcocaN 36408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-docaN 36409
This theorem is referenced by:  docafvalN  36411
  Copyright terms: Public domain W3C validator