Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochffval Structured version   Visualization version   Unicode version

Theorem dochffval 36638
Description: Subspace orthocomplement for  DVecH vector space. (Contributed by NM, 14-Mar-2014.)
Hypotheses
Ref Expression
dochval.b  |-  B  =  ( Base `  K
)
dochval.g  |-  G  =  ( glb `  K
)
dochval.o  |-  ._|_  =  ( oc `  K )
dochval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
dochffval  |-  ( K  e.  V  ->  ( ocH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w ) )  |->  ( ( ( DIsoH `  K
) `  w ) `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w
) `  y ) } ) ) ) ) ) )
Distinct variable groups:    y, B    w, H    x, w, y, K
Allowed substitution hints:    B( x, w)    G( x, y, w)    H( x, y)    ._|_ ( x, y, w)    V( x, y, w)

Proof of Theorem dochffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 6191 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 dochval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2674 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 6193 . . . . . . 7  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
76fveq2d 6195 . . . . . 6  |-  ( k  =  K  ->  ( Base `  ( ( DVecH `  k ) `  w
) )  =  (
Base `  ( ( DVecH `  K ) `  w ) ) )
87pweqd 4163 . . . . 5  |-  ( k  =  K  ->  ~P ( Base `  ( ( DVecH `  k ) `  w ) )  =  ~P ( Base `  (
( DVecH `  K ) `  w ) ) )
9 fveq2 6191 . . . . . . 7  |-  ( k  =  K  ->  ( DIsoH `  k )  =  ( DIsoH `  K )
)
109fveq1d 6193 . . . . . 6  |-  ( k  =  K  ->  (
( DIsoH `  k ) `  w )  =  ( ( DIsoH `  K ) `  w ) )
11 fveq2 6191 . . . . . . . 8  |-  ( k  =  K  ->  ( oc `  k )  =  ( oc `  K
) )
12 dochval.o . . . . . . . 8  |-  ._|_  =  ( oc `  K )
1311, 12syl6eqr 2674 . . . . . . 7  |-  ( k  =  K  ->  ( oc `  k )  = 
._|_  )
14 fveq2 6191 . . . . . . . . 9  |-  ( k  =  K  ->  ( glb `  k )  =  ( glb `  K
) )
15 dochval.g . . . . . . . . 9  |-  G  =  ( glb `  K
)
1614, 15syl6eqr 2674 . . . . . . . 8  |-  ( k  =  K  ->  ( glb `  k )  =  G )
17 fveq2 6191 . . . . . . . . . 10  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
18 dochval.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
1917, 18syl6eqr 2674 . . . . . . . . 9  |-  ( k  =  K  ->  ( Base `  k )  =  B )
2010fveq1d 6193 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( ( DIsoH `  k
) `  w ) `  y )  =  ( ( ( DIsoH `  K
) `  w ) `  y ) )
2120sseq2d 3633 . . . . . . . . 9  |-  ( k  =  K  ->  (
x  C_  ( (
( DIsoH `  k ) `  w ) `  y
)  <->  x  C_  ( ( ( DIsoH `  K ) `  w ) `  y
) ) )
2219, 21rabeqbidv 3195 . . . . . . . 8  |-  ( k  =  K  ->  { y  e.  ( Base `  k
)  |  x  C_  ( ( ( DIsoH `  k ) `  w
) `  y ) }  =  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w
) `  y ) } )
2316, 22fveq12d 6197 . . . . . . 7  |-  ( k  =  K  ->  (
( glb `  k
) `  { y  e.  ( Base `  k
)  |  x  C_  ( ( ( DIsoH `  k ) `  w
) `  y ) } )  =  ( G `  { y  e.  B  |  x 
C_  ( ( (
DIsoH `  K ) `  w ) `  y
) } ) )
2413, 23fveq12d 6197 . . . . . 6  |-  ( k  =  K  ->  (
( oc `  k
) `  ( ( glb `  k ) `  { y  e.  (
Base `  k )  |  x  C_  ( ( ( DIsoH `  k ) `  w ) `  y
) } ) )  =  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w
) `  y ) } ) ) )
2510, 24fveq12d 6197 . . . . 5  |-  ( k  =  K  ->  (
( ( DIsoH `  k
) `  w ) `  ( ( oc `  k ) `  (
( glb `  k
) `  { y  e.  ( Base `  k
)  |  x  C_  ( ( ( DIsoH `  k ) `  w
) `  y ) } ) ) )  =  ( ( (
DIsoH `  K ) `  w ) `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w ) `  y
) } ) ) ) )
268, 25mpteq12dv 4733 . . . 4  |-  ( k  =  K  ->  (
x  e.  ~P ( Base `  ( ( DVecH `  k ) `  w
) )  |->  ( ( ( DIsoH `  k ) `  w ) `  (
( oc `  k
) `  ( ( glb `  k ) `  { y  e.  (
Base `  k )  |  x  C_  ( ( ( DIsoH `  k ) `  w ) `  y
) } ) ) ) )  =  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w
) )  |->  ( ( ( DIsoH `  K ) `  w ) `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w ) `  y
) } ) ) ) ) )
274, 26mpteq12dv 4733 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  k
) `  w )
)  |->  ( ( (
DIsoH `  k ) `  w ) `  (
( oc `  k
) `  ( ( glb `  k ) `  { y  e.  (
Base `  k )  |  x  C_  ( ( ( DIsoH `  k ) `  w ) `  y
) } ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w ) )  |->  ( ( ( DIsoH `  K
) `  w ) `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w
) `  y ) } ) ) ) ) ) )
28 df-doch 36637 . . 3  |-  ocH  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  k ) `  w
) )  |->  ( ( ( DIsoH `  k ) `  w ) `  (
( oc `  k
) `  ( ( glb `  k ) `  { y  e.  (
Base `  k )  |  x  C_  ( ( ( DIsoH `  k ) `  w ) `  y
) } ) ) ) ) ) )
29 fvex 6201 . . . . 5  |-  ( LHyp `  K )  e.  _V
303, 29eqeltri 2697 . . . 4  |-  H  e. 
_V
3130mptex 6486 . . 3  |-  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K
) `  w )
)  |->  ( ( (
DIsoH `  K ) `  w ) `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w ) `  y
) } ) ) ) ) )  e. 
_V
3227, 28, 31fvmpt 6282 . 2  |-  ( K  e.  _V  ->  ( ocH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w ) )  |->  ( ( ( DIsoH `  K
) `  w ) `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w
) `  y ) } ) ) ) ) ) )
331, 32syl 17 1  |-  ( K  e.  V  ->  ( ocH `  K )  =  ( w  e.  H  |->  ( x  e.  ~P ( Base `  ( ( DVecH `  K ) `  w ) )  |->  ( ( ( DIsoH `  K
) `  w ) `  (  ._|_  `  ( G `  { y  e.  B  |  x  C_  ( ( ( DIsoH `  K ) `  w
) `  y ) } ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888   Basecbs 15857   occoc 15949   glbcglb 16943   LHypclh 35270   DVecHcdvh 36367   DIsoHcdih 36517   ocHcoch 36636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-doch 36637
This theorem is referenced by:  dochfval  36639
  Copyright terms: Public domain W3C validator