MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1ALT Structured version   Visualization version   Unicode version

Theorem dral1ALT 2326
Description: Alternate proof of dral1 2325, shorter but requiring ax-11 2034. (Contributed by NM, 24-Nov-1994.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
dral1.1  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dral1ALT  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )

Proof of Theorem dral1ALT
StepHypRef Expression
1 dral1.1 . . 3  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
21dral2 2324 . 2  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. x ps ) )
3 axc11 2314 . . 3  |-  ( A. x  x  =  y  ->  ( A. x ps 
->  A. y ps )
)
4 axc11r 2187 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ps 
->  A. x ps )
)
53, 4impbid 202 . 2  |-  ( A. x  x  =  y  ->  ( A. x ps  <->  A. y ps ) )
62, 5bitrd 268 1  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator