MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1 Structured version   Visualization version   Unicode version

Theorem dral1 2325
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 6-Sep-2018.)
Hypothesis
Ref Expression
dral1.1  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dral1  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )

Proof of Theorem dral1
StepHypRef Expression
1 nfa1 2028 . . 3  |-  F/ x A. x  x  =  y
2 dral1.1 . . 3  |-  ( A. x  x  =  y  ->  ( ph  <->  ps )
)
31, 2albid 2090 . 2  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. x ps ) )
4 axc11 2314 . . 3  |-  ( A. x  x  =  y  ->  ( A. x ps 
->  A. y ps )
)
5 axc11r 2187 . . 3  |-  ( A. x  x  =  y  ->  ( A. y ps 
->  A. x ps )
)
64, 5impbid 202 . 2  |-  ( A. x  x  =  y  ->  ( A. x ps  <->  A. y ps ) )
73, 6bitrd 268 1  |-  ( A. x  x  =  y  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  drex1  2327  drnf1  2329  ax12OLD  2341  axc16gALT  2367  sb9  2426  ralcom2  3104  axpownd  9423  wl-dral1d  33318  wl-ax11-lem5  33366  wl-ax11-lem8  33369  wl-ax11-lem9  33370
  Copyright terms: Public domain W3C validator