MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds2lem Structured version   Visualization version   Unicode version

Theorem dvds2lem 14994
Description: A lemma to assist theorems of  || with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds2lem.1  |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )
dvds2lem.2  |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )
dvds2lem.3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
dvds2lem.4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )
dvds2lem.5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )
Assertion
Ref Expression
dvds2lem  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  M  ||  N
) )
Distinct variable groups:    x, I,
y    x, J, y    x, K, y    x, L, y   
x, M, y    x, N, y    ph, x, y
Allowed substitution hints:    Z( x, y)

Proof of Theorem dvds2lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvds2lem.1 . . . . . 6  |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )
2 dvds2lem.2 . . . . . 6  |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )
3 divides 14985 . . . . . . 7  |-  ( ( I  e.  ZZ  /\  J  e.  ZZ )  ->  ( I  ||  J  <->  E. x  e.  ZZ  (
x  x.  I )  =  J ) )
4 divides 14985 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  L  e.  ZZ )  ->  ( K  ||  L  <->  E. y  e.  ZZ  (
y  x.  K )  =  L ) )
53, 4bi2anan9 917 . . . . . 6  |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  L  e.  ZZ ) )  -> 
( ( I  ||  J  /\  K  ||  L
)  <->  ( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) ) )
61, 2, 5syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  <->  ( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) ) )
76biimpd 219 . . . 4  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  ( E. x  e.  ZZ  (
x  x.  I )  =  J  /\  E. y  e.  ZZ  (
y  x.  K )  =  L ) ) )
8 reeanv 3107 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  x.  I
)  =  J  /\  ( y  x.  K
)  =  L )  <-> 
( E. x  e.  ZZ  ( x  x.  I )  =  J  /\  E. y  e.  ZZ  ( y  x.  K )  =  L ) )
97, 8syl6ibr 242 . . 3  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L ) ) )
10 dvds2lem.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )
11 dvds2lem.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )
12 oveq1 6657 . . . . . . 7  |-  ( z  =  Z  ->  (
z  x.  M )  =  ( Z  x.  M ) )
1312eqeq1d 2624 . . . . . 6  |-  ( z  =  Z  ->  (
( z  x.  M
)  =  N  <->  ( Z  x.  M )  =  N ) )
1413rspcev 3309 . . . . 5  |-  ( ( Z  e.  ZZ  /\  ( Z  x.  M
)  =  N )  ->  E. z  e.  ZZ  ( z  x.  M
)  =  N )
1510, 11, 14syl6an 568 . . . 4  |-  ( (
ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
1615rexlimdvva 3038 . . 3  |-  ( ph  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
179, 16syld 47 . 2  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  E. z  e.  ZZ  ( z  x.  M )  =  N ) )
18 dvds2lem.3 . . 3  |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
19 divides 14985 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
2018, 19syl 17 . 2  |-  ( ph  ->  ( M  ||  N  <->  E. z  e.  ZZ  (
z  x.  M )  =  N ) )
2117, 20sylibrd 249 1  |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L
)  ->  M  ||  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   class class class wbr 4653  (class class class)co 6650    x. cmul 9941   ZZcz 11377    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-iota 5851  df-fv 5896  df-ov 6653  df-dvds 14984
This theorem is referenced by:  dvds2ln  15014  dvds2add  15015  dvds2sub  15016  dvdstr  15018
  Copyright terms: Public domain W3C validator