| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvds2lem | Structured version Visualization version Unicode version | ||
| Description: A lemma to assist
theorems of |
| Ref | Expression |
|---|---|
| dvds2lem.1 |
|
| dvds2lem.2 |
|
| dvds2lem.3 |
|
| dvds2lem.4 |
|
| dvds2lem.5 |
|
| Ref | Expression |
|---|---|
| dvds2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds2lem.1 |
. . . . . 6
| |
| 2 | dvds2lem.2 |
. . . . . 6
| |
| 3 | divides 14985 |
. . . . . . 7
| |
| 4 | divides 14985 |
. . . . . . 7
| |
| 5 | 3, 4 | bi2anan9 917 |
. . . . . 6
|
| 6 | 1, 2, 5 | syl2anc 693 |
. . . . 5
|
| 7 | 6 | biimpd 219 |
. . . 4
|
| 8 | reeanv 3107 |
. . . 4
| |
| 9 | 7, 8 | syl6ibr 242 |
. . 3
|
| 10 | dvds2lem.4 |
. . . . 5
| |
| 11 | dvds2lem.5 |
. . . . 5
| |
| 12 | oveq1 6657 |
. . . . . . 7
| |
| 13 | 12 | eqeq1d 2624 |
. . . . . 6
|
| 14 | 13 | rspcev 3309 |
. . . . 5
|
| 15 | 10, 11, 14 | syl6an 568 |
. . . 4
|
| 16 | 15 | rexlimdvva 3038 |
. . 3
|
| 17 | 9, 16 | syld 47 |
. 2
|
| 18 | dvds2lem.3 |
. . 3
| |
| 19 | divides 14985 |
. . 3
| |
| 20 | 18, 19 | syl 17 |
. 2
|
| 21 | 17, 20 | sylibrd 249 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-iota 5851 df-fv 5896 df-ov 6653 df-dvds 14984 |
| This theorem is referenced by: dvds2ln 15014 dvds2add 15015 dvds2sub 15016 dvdstr 15018 |
| Copyright terms: Public domain | W3C validator |