MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecovcom Structured version   Visualization version   Unicode version

Theorem ecovcom 7854
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.)
Hypotheses
Ref Expression
ecovcom.1  |-  C  =  ( ( S  X.  S ) /.  .~  )
ecovcom.2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )
ecovcom.3  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
ecovcom.4  |-  D  =  H
ecovcom.5  |-  G  =  J
Assertion
Ref Expression
ecovcom  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
Distinct variable groups:    x, y,
z, w, A    z, B, w    x,  .+ , y,
z, w    x,  .~ , y, z, w    x, S, y, z, w    z, C, w
Allowed substitution hints:    B( x, y)    C( x, y)    D( x, y, z, w)    G( x, y, z, w)    H( x, y, z, w)    J( x, y, z, w)

Proof of Theorem ecovcom
StepHypRef Expression
1 ecovcom.1 . 2  |-  C  =  ( ( S  X.  S ) /.  .~  )
2 oveq1 6657 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( A  .+  [ <. z ,  w >. ]  .~  ) )
3 oveq2 6658 . . 3  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A
) )
42, 3eqeq12d 2637 . 2  |-  ( [
<. x ,  y >. ]  .~  =  A  -> 
( ( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  <->  ( A  .+  [ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A ) ) )
5 oveq2 6658 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( A  .+  [ <. z ,  w >. ]  .~  )  =  ( A  .+  B ) )
6 oveq1 6657 . . 3  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( [ <. z ,  w >. ]  .~  .+  A )  =  ( B  .+  A ) )
75, 6eqeq12d 2637 . 2  |-  ( [
<. z ,  w >. ]  .~  =  B  -> 
( ( A  .+  [
<. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  A
)  <->  ( A  .+  B )  =  ( B  .+  A ) ) )
8 ecovcom.4 . . . 4  |-  D  =  H
9 ecovcom.5 . . . 4  |-  G  =  J
10 opeq12 4404 . . . . 5  |-  ( ( D  =  H  /\  G  =  J )  -> 
<. D ,  G >.  = 
<. H ,  J >. )
1110eceq1d 7783 . . . 4  |-  ( ( D  =  H  /\  G  =  J )  ->  [ <. D ,  G >. ]  .~  =  [ <. H ,  J >. ]  .~  )
128, 9, 11mp2an 708 . . 3  |-  [ <. D ,  G >. ]  .~  =  [ <. H ,  J >. ]  .~
13 ecovcom.2 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  [ <. D ,  G >. ]  .~  )
14 ecovcom.3 . . . 4  |-  ( ( ( z  e.  S  /\  w  e.  S
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
1514ancoms 469 . . 3  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  )  =  [ <. H ,  J >. ]  .~  )
1612, 13, 153eqtr4a 2682 . 2  |-  ( ( ( x  e.  S  /\  y  e.  S
)  /\  ( z  e.  S  /\  w  e.  S ) )  -> 
( [ <. x ,  y >. ]  .~  .+ 
[ <. z ,  w >. ]  .~  )  =  ( [ <. z ,  w >. ]  .~  .+  [
<. x ,  y >. ]  .~  ) )
171, 4, 7, 162ecoptocl 7838 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183    X. cxp 5112  (class class class)co 6650   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-ec 7744  df-qs 7748
This theorem is referenced by:  addcomsr  9908  mulcomsr  9910  axmulcom  9976
  Copyright terms: Public domain W3C validator