MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceqoveq Structured version   Visualization version   Unicode version

Theorem eceqoveq 7853
Description: Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
eceqoveq.5  |-  .~  Er  ( S  X.  S
)
eceqoveq.7  |-  dom  .+  =  ( S  X.  S )
eceqoveq.8  |-  -.  (/)  e.  S
eceqoveq.9  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
eceqoveq.10  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
Assertion
Ref Expression
eceqoveq  |-  ( ( A  e.  S  /\  C  e.  S )  ->  ( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
Distinct variable groups:    x, y,  .+    x, S, y    x, A, y    x, B, y   
x, C, y    x, D, y
Allowed substitution hints:    .~ ( x, y)

Proof of Theorem eceqoveq
StepHypRef Expression
1 opelxpi 5148 . . . . . . . 8  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( S  X.  S
) )
21ad2antrr 762 . . . . . . 7  |-  ( ( ( ( A  e.  S  /\  B  e.  S )  /\  C  e.  S )  /\  [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  )  ->  <. A ,  B >.  e.  ( S  X.  S ) )
3 eceqoveq.5 . . . . . . . . 9  |-  .~  Er  ( S  X.  S
)
43a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  S  /\  B  e.  S )  /\  C  e.  S )  /\  [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  )  ->  .~  Er  ( S  X.  S ) )
5 simpr 477 . . . . . . . 8  |-  ( ( ( ( A  e.  S  /\  B  e.  S )  /\  C  e.  S )  /\  [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  )  ->  [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  )
64, 5ereldm 7790 . . . . . . 7  |-  ( ( ( ( A  e.  S  /\  B  e.  S )  /\  C  e.  S )  /\  [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  )  ->  ( <. A ,  B >.  e.  ( S  X.  S )  <->  <. C ,  D >.  e.  ( S  X.  S ) ) )
72, 6mpbid 222 . . . . . 6  |-  ( ( ( ( A  e.  S  /\  B  e.  S )  /\  C  e.  S )  /\  [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  )  ->  <. C ,  D >.  e.  ( S  X.  S ) )
8 opelxp2 5151 . . . . . 6  |-  ( <. C ,  D >.  e.  ( S  X.  S
)  ->  D  e.  S )
97, 8syl 17 . . . . 5  |-  ( ( ( ( A  e.  S  /\  B  e.  S )  /\  C  e.  S )  /\  [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  )  ->  D  e.  S
)
109ex 450 . . . 4  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S )  ->  ( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  ->  D  e.  S ) )
11 eceqoveq.9 . . . . . . . 8  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
1211caovcl 6828 . . . . . . 7  |-  ( ( B  e.  S  /\  C  e.  S )  ->  ( B  .+  C
)  e.  S )
13 eleq1 2689 . . . . . . 7  |-  ( ( A  .+  D )  =  ( B  .+  C )  ->  (
( A  .+  D
)  e.  S  <->  ( B  .+  C )  e.  S
) )
1412, 13syl5ibr 236 . . . . . 6  |-  ( ( A  .+  D )  =  ( B  .+  C )  ->  (
( B  e.  S  /\  C  e.  S
)  ->  ( A  .+  D )  e.  S
) )
15 eceqoveq.7 . . . . . . . 8  |-  dom  .+  =  ( S  X.  S )
16 eceqoveq.8 . . . . . . . 8  |-  -.  (/)  e.  S
1715, 16ndmovrcl 6820 . . . . . . 7  |-  ( ( A  .+  D )  e.  S  ->  ( A  e.  S  /\  D  e.  S )
)
1817simprd 479 . . . . . 6  |-  ( ( A  .+  D )  e.  S  ->  D  e.  S )
1914, 18syl6com 37 . . . . 5  |-  ( ( B  e.  S  /\  C  e.  S )  ->  ( ( A  .+  D )  =  ( B  .+  C )  ->  D  e.  S
) )
2019adantll 750 . . . 4  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S )  ->  (
( A  .+  D
)  =  ( B 
.+  C )  ->  D  e.  S )
)
213a1i 11 . . . . . . 7  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  .~  Er  ( S  X.  S ) )
221adantr 481 . . . . . . 7  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  ->  <. A ,  B >.  e.  ( S  X.  S
) )
2321, 22erth 7791 . . . . . 6  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <->  [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  ) )
24 eceqoveq.10 . . . . . 6  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  .~  <. C ,  D >.  <-> 
( A  .+  D
)  =  ( B 
.+  C ) ) )
2523, 24bitr3d 270 . . . . 5  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
2625expr 643 . . . 4  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S )  ->  ( D  e.  S  ->  ( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  =  ( B  .+  C ) ) ) )
2710, 20, 26pm5.21ndd 369 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S )  ->  ( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
2827an32s 846 . 2  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  B  e.  S )  ->  ( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
29 eqcom 2629 . . . 4  |-  ( (/)  =  [ <. C ,  D >. ]  .~  <->  [ <. C ,  D >. ]  .~  =  (/) )
30 erdm 7752 . . . . . . . . . . . 12  |-  (  .~  Er  ( S  X.  S
)  ->  dom  .~  =  ( S  X.  S
) )
313, 30ax-mp 5 . . . . . . . . . . 11  |-  dom  .~  =  ( S  X.  S )
3231eleq2i 2693 . . . . . . . . . 10  |-  ( <. C ,  D >.  e. 
dom  .~  <->  <. C ,  D >.  e.  ( S  X.  S ) )
33 ecdmn0 7789 . . . . . . . . . 10  |-  ( <. C ,  D >.  e. 
dom  .~  <->  [ <. C ,  D >. ]  .~  =/=  (/) )
34 opelxp 5146 . . . . . . . . . 10  |-  ( <. C ,  D >.  e.  ( S  X.  S
)  <->  ( C  e.  S  /\  D  e.  S ) )
3532, 33, 343bitr3i 290 . . . . . . . . 9  |-  ( [
<. C ,  D >. ]  .~  =/=  (/)  <->  ( C  e.  S  /\  D  e.  S ) )
3635simplbi2 655 . . . . . . . 8  |-  ( C  e.  S  ->  ( D  e.  S  ->  [
<. C ,  D >. ]  .~  =/=  (/) ) )
3736ad2antlr 763 . . . . . . 7  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( D  e.  S  ->  [
<. C ,  D >. ]  .~  =/=  (/) ) )
3837necon2bd 2810 . . . . . 6  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( [ <. C ,  D >. ]  .~  =  (/)  ->  -.  D  e.  S
) )
39 simpr 477 . . . . . . . 8  |-  ( ( A  e.  S  /\  D  e.  S )  ->  D  e.  S )
4039con3i 150 . . . . . . 7  |-  ( -.  D  e.  S  ->  -.  ( A  e.  S  /\  D  e.  S
) )
4115ndmov 6818 . . . . . . 7  |-  ( -.  ( A  e.  S  /\  D  e.  S
)  ->  ( A  .+  D )  =  (/) )
4240, 41syl 17 . . . . . 6  |-  ( -.  D  e.  S  -> 
( A  .+  D
)  =  (/) )
4338, 42syl6 35 . . . . 5  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( [ <. C ,  D >. ]  .~  =  (/)  ->  ( A  .+  D
)  =  (/) ) )
44 eleq1 2689 . . . . . . 7  |-  ( ( A  .+  D )  =  (/)  ->  ( ( A  .+  D )  e.  S  <->  (/)  e.  S
) )
4516, 44mtbiri 317 . . . . . 6  |-  ( ( A  .+  D )  =  (/)  ->  -.  ( A  .+  D )  e.  S )
4635simprbi 480 . . . . . . . 8  |-  ( [
<. C ,  D >. ]  .~  =/=  (/)  ->  D  e.  S )
4711caovcl 6828 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  D  e.  S )  ->  ( A  .+  D
)  e.  S )
4847ex 450 . . . . . . . . 9  |-  ( A  e.  S  ->  ( D  e.  S  ->  ( A  .+  D )  e.  S ) )
4948ad2antrr 762 . . . . . . . 8  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( D  e.  S  ->  ( A  .+  D )  e.  S ) )
5046, 49syl5 34 . . . . . . 7  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( [ <. C ,  D >. ]  .~  =/=  (/)  ->  ( A  .+  D )  e.  S ) )
5150necon1bd 2812 . . . . . 6  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( -.  ( A  .+  D
)  e.  S  ->  [ <. C ,  D >. ]  .~  =  (/) ) )
5245, 51syl5 34 . . . . 5  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  (
( A  .+  D
)  =  (/)  ->  [ <. C ,  D >. ]  .~  =  (/) ) )
5343, 52impbid 202 . . . 4  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( [ <. C ,  D >. ]  .~  =  (/)  <->  ( A  .+  D )  =  (/) ) )
5429, 53syl5bb 272 . . 3  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( (/)  =  [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  =  (/) ) )
5531eleq2i 2693 . . . . . . . 8  |-  ( <. A ,  B >.  e. 
dom  .~  <->  <. A ,  B >.  e.  ( S  X.  S ) )
56 ecdmn0 7789 . . . . . . . 8  |-  ( <. A ,  B >.  e. 
dom  .~  <->  [ <. A ,  B >. ]  .~  =/=  (/) )
57 opelxp 5146 . . . . . . . 8  |-  ( <. A ,  B >.  e.  ( S  X.  S
)  <->  ( A  e.  S  /\  B  e.  S ) )
5855, 56, 573bitr3i 290 . . . . . . 7  |-  ( [
<. A ,  B >. ]  .~  =/=  (/)  <->  ( A  e.  S  /\  B  e.  S ) )
5958simprbi 480 . . . . . 6  |-  ( [
<. A ,  B >. ]  .~  =/=  (/)  ->  B  e.  S )
6059necon1bi 2822 . . . . 5  |-  ( -.  B  e.  S  ->  [ <. A ,  B >. ]  .~  =  (/) )
6160adantl 482 . . . 4  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  [ <. A ,  B >. ]  .~  =  (/) )
6261eqeq1d 2624 . . 3  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  <->  (/)  =  [ <. C ,  D >. ]  .~  ) )
63 simpl 473 . . . . . . 7  |-  ( ( B  e.  S  /\  C  e.  S )  ->  B  e.  S )
6463con3i 150 . . . . . 6  |-  ( -.  B  e.  S  ->  -.  ( B  e.  S  /\  C  e.  S
) )
6515ndmov 6818 . . . . . 6  |-  ( -.  ( B  e.  S  /\  C  e.  S
)  ->  ( B  .+  C )  =  (/) )
6664, 65syl 17 . . . . 5  |-  ( -.  B  e.  S  -> 
( B  .+  C
)  =  (/) )
6766adantl 482 . . . 4  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( B  .+  C )  =  (/) )
6867eqeq2d 2632 . . 3  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  (
( A  .+  D
)  =  ( B 
.+  C )  <->  ( A  .+  D )  =  (/) ) )
6954, 62, 683bitr4d 300 . 2  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  -.  B  e.  S )  ->  ( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
7028, 69pm2.61dan 832 1  |-  ( ( A  e.  S  /\  C  e.  S )  ->  ( [ <. A ,  B >. ]  .~  =  [ <. C ,  D >. ]  .~  <->  ( A  .+  D )  =  ( B  .+  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114  (class class class)co 6650    Er wer 7739   [cec 7740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-er 7742  df-ec 7744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator