| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecovdi | Structured version Visualization version Unicode version | ||
| Description: Lemma used to transfer a distributive law via an equivalence relation. (Contributed by NM, 2-Sep-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
| Ref | Expression |
|---|---|
| ecovdi.1 |
|
| ecovdi.2 |
|
| ecovdi.3 |
|
| ecovdi.4 |
|
| ecovdi.5 |
|
| ecovdi.6 |
|
| ecovdi.7 |
|
| ecovdi.8 |
|
| ecovdi.9 |
|
| ecovdi.10 |
|
| ecovdi.11 |
|
| Ref | Expression |
|---|---|
| ecovdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecovdi.1 |
. 2
| |
| 2 | oveq1 6657 |
. . 3
| |
| 3 | oveq1 6657 |
. . . 4
| |
| 4 | oveq1 6657 |
. . . 4
| |
| 5 | 3, 4 | oveq12d 6668 |
. . 3
|
| 6 | 2, 5 | eqeq12d 2637 |
. 2
|
| 7 | oveq1 6657 |
. . . 4
| |
| 8 | 7 | oveq2d 6666 |
. . 3
|
| 9 | oveq2 6658 |
. . . 4
| |
| 10 | 9 | oveq1d 6665 |
. . 3
|
| 11 | 8, 10 | eqeq12d 2637 |
. 2
|
| 12 | oveq2 6658 |
. . . 4
| |
| 13 | 12 | oveq2d 6666 |
. . 3
|
| 14 | oveq2 6658 |
. . . 4
| |
| 15 | 14 | oveq2d 6666 |
. . 3
|
| 16 | 13, 15 | eqeq12d 2637 |
. 2
|
| 17 | ecovdi.10 |
. . . 4
| |
| 18 | ecovdi.11 |
. . . 4
| |
| 19 | opeq12 4404 |
. . . . 5
| |
| 20 | 19 | eceq1d 7783 |
. . . 4
|
| 21 | 17, 18, 20 | mp2an 708 |
. . 3
|
| 22 | ecovdi.2 |
. . . . . . 7
| |
| 23 | 22 | oveq2d 6666 |
. . . . . 6
|
| 24 | 23 | adantl 482 |
. . . . 5
|
| 25 | ecovdi.7 |
. . . . . 6
| |
| 26 | ecovdi.3 |
. . . . . 6
| |
| 27 | 25, 26 | sylan2 491 |
. . . . 5
|
| 28 | 24, 27 | eqtrd 2656 |
. . . 4
|
| 29 | 28 | 3impb 1260 |
. . 3
|
| 30 | ecovdi.4 |
. . . . . 6
| |
| 31 | ecovdi.5 |
. . . . . 6
| |
| 32 | 30, 31 | oveqan12d 6669 |
. . . . 5
|
| 33 | ecovdi.8 |
. . . . . 6
| |
| 34 | ecovdi.9 |
. . . . . 6
| |
| 35 | ecovdi.6 |
. . . . . 6
| |
| 36 | 33, 34, 35 | syl2an 494 |
. . . . 5
|
| 37 | 32, 36 | eqtrd 2656 |
. . . 4
|
| 38 | 37 | 3impdi 1381 |
. . 3
|
| 39 | 21, 29, 38 | 3eqtr4a 2682 |
. 2
|
| 40 | 1, 6, 11, 16, 39 | 3ecoptocl 7839 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fv 5896 df-ov 6653 df-ec 7744 df-qs 7748 |
| This theorem is referenced by: distrsr 9912 axdistr 9979 |
| Copyright terms: Public domain | W3C validator |