| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distrsr | Structured version Visualization version Unicode version | ||
| Description: Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| distrsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 9878 |
. . 3
| |
| 2 | addsrpr 9896 |
. . 3
| |
| 3 | mulsrpr 9897 |
. . 3
| |
| 4 | mulsrpr 9897 |
. . 3
| |
| 5 | mulsrpr 9897 |
. . 3
| |
| 6 | addsrpr 9896 |
. . 3
| |
| 7 | addclpr 9840 |
. . . . 5
| |
| 8 | addclpr 9840 |
. . . . 5
| |
| 9 | 7, 8 | anim12i 590 |
. . . 4
|
| 10 | 9 | an4s 869 |
. . 3
|
| 11 | mulclpr 9842 |
. . . . . 6
| |
| 12 | mulclpr 9842 |
. . . . . 6
| |
| 13 | addclpr 9840 |
. . . . . 6
| |
| 14 | 11, 12, 13 | syl2an 494 |
. . . . 5
|
| 15 | 14 | an4s 869 |
. . . 4
|
| 16 | mulclpr 9842 |
. . . . . 6
| |
| 17 | mulclpr 9842 |
. . . . . 6
| |
| 18 | addclpr 9840 |
. . . . . 6
| |
| 19 | 16, 17, 18 | syl2an 494 |
. . . . 5
|
| 20 | 19 | an42s 870 |
. . . 4
|
| 21 | 15, 20 | jca 554 |
. . 3
|
| 22 | mulclpr 9842 |
. . . . . 6
| |
| 23 | mulclpr 9842 |
. . . . . 6
| |
| 24 | addclpr 9840 |
. . . . . 6
| |
| 25 | 22, 23, 24 | syl2an 494 |
. . . . 5
|
| 26 | 25 | an4s 869 |
. . . 4
|
| 27 | mulclpr 9842 |
. . . . . 6
| |
| 28 | mulclpr 9842 |
. . . . . 6
| |
| 29 | addclpr 9840 |
. . . . . 6
| |
| 30 | 27, 28, 29 | syl2an 494 |
. . . . 5
|
| 31 | 30 | an42s 870 |
. . . 4
|
| 32 | 26, 31 | jca 554 |
. . 3
|
| 33 | distrpr 9850 |
. . . . 5
| |
| 34 | distrpr 9850 |
. . . . 5
| |
| 35 | 33, 34 | oveq12i 6662 |
. . . 4
|
| 36 | ovex 6678 |
. . . . 5
| |
| 37 | ovex 6678 |
. . . . 5
| |
| 38 | ovex 6678 |
. . . . 5
| |
| 39 | addcompr 9843 |
. . . . 5
| |
| 40 | addasspr 9844 |
. . . . 5
| |
| 41 | ovex 6678 |
. . . . 5
| |
| 42 | 36, 37, 38, 39, 40, 41 | caov4 6865 |
. . . 4
|
| 43 | 35, 42 | eqtri 2644 |
. . 3
|
| 44 | distrpr 9850 |
. . . . 5
| |
| 45 | distrpr 9850 |
. . . . 5
| |
| 46 | 44, 45 | oveq12i 6662 |
. . . 4
|
| 47 | ovex 6678 |
. . . . 5
| |
| 48 | ovex 6678 |
. . . . 5
| |
| 49 | ovex 6678 |
. . . . 5
| |
| 50 | ovex 6678 |
. . . . 5
| |
| 51 | 47, 48, 49, 39, 40, 50 | caov4 6865 |
. . . 4
|
| 52 | 46, 51 | eqtri 2644 |
. . 3
|
| 53 | 1, 2, 3, 4, 5, 6, 10, 21, 32, 43, 52 | ecovdi 7856 |
. 2
|
| 54 | dmaddsr 9906 |
. . 3
| |
| 55 | 0nsr 9900 |
. . 3
| |
| 56 | dmmulsr 9907 |
. . 3
| |
| 57 | 54, 55, 56 | ndmovdistr 6823 |
. 2
|
| 58 | 53, 57 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ec 7744 df-qs 7748 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-rq 9739 df-ltnq 9740 df-np 9803 df-plp 9805 df-mp 9806 df-ltp 9807 df-enr 9877 df-nr 9878 df-plr 9879 df-mr 9880 |
| This theorem is referenced by: pn0sr 9922 axmulass 9978 axdistr 9979 |
| Copyright terms: Public domain | W3C validator |