Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaltxp Structured version   Visualization version   Unicode version

Theorem elaltxp 32082
Description: Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.)
Assertion
Ref Expression
elaltxp  |-  ( X  e.  ( A  XX.  B )  <->  E. x  e.  A  E. y  e.  B  X  =  << x ,  y >> )
Distinct variable groups:    x, A, y    x, B, y    x, X, y

Proof of Theorem elaltxp
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2  |-  ( X  e.  ( A  XX.  B )  ->  X  e.  _V )
2 altopex 32067 . . . . 5  |-  << x ,  y >>  e.  _V
3 eleq1 2689 . . . . 5  |-  ( X  =  << x ,  y
>>  ->  ( X  e. 
_V 
<-> 
<< x ,  y >>  e. 
_V ) )
42, 3mpbiri 248 . . . 4  |-  ( X  =  << x ,  y
>>  ->  X  e.  _V )
54a1i 11 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( X  =  << x ,  y >>  ->  X  e.  _V ) )
65rexlimivv 3036 . 2  |-  ( E. x  e.  A  E. y  e.  B  X  =  << x ,  y
>>  ->  X  e.  _V )
7 eqeq1 2626 . . . 4  |-  ( z  =  X  ->  (
z  =  << x ,  y >> 
<->  X  =  << x ,  y >> ) )
872rexbidv 3057 . . 3  |-  ( z  =  X  ->  ( E. x  e.  A  E. y  e.  B  z  =  << x ,  y >> 
<->  E. x  e.  A  E. y  e.  B  X  =  << x ,  y >> ) )
9 df-altxp 32066 . . 3  |-  ( A 
XX.  B )  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  << x ,  y
>> }
108, 9elab2g 3353 . 2  |-  ( X  e.  _V  ->  ( X  e.  ( A  XX. 
B )  <->  E. x  e.  A  E. y  e.  B  X  =  << x ,  y >> ) )
111, 6, 10pm5.21nii 368 1  |-  ( X  e.  ( A  XX.  B )  <->  E. x  e.  A  E. y  e.  B  X  =  << x ,  y >> )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   <<caltop 32063    XX. caltxp 32064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180  df-altop 32065  df-altxp 32066
This theorem is referenced by:  altopelaltxp  32083  altxpsspw  32084
  Copyright terms: Public domain W3C validator