Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopelaltxp Structured version   Visualization version   Unicode version

Theorem altopelaltxp 32083
Description: Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5146, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopelaltxp  |-  ( << X ,  Y >>  e.  ( A  XX.  B )  <->  ( X  e.  A  /\  Y  e.  B )
)

Proof of Theorem altopelaltxp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaltxp 32082 . 2  |-  ( << X ,  Y >>  e.  ( A  XX.  B )  <->  E. x  e.  A  E. y  e.  B  << X ,  Y >>  =  << x ,  y >> )
2 reeanv 3107 . . 3  |-  ( E. x  e.  A  E. y  e.  B  (
x  =  X  /\  y  =  Y )  <->  ( E. x  e.  A  x  =  X  /\  E. y  e.  B  y  =  Y ) )
3 eqcom 2629 . . . . 5  |-  ( << X ,  Y >>  =  << x ,  y >>  <->  << x ,  y >>  =  << X ,  Y >> )
4 vex 3203 . . . . . 6  |-  x  e. 
_V
5 vex 3203 . . . . . 6  |-  y  e. 
_V
64, 5altopth 32076 . . . . 5  |-  ( << x ,  y >>  =  << X ,  Y >>  <->  ( x  =  X  /\  y  =  Y ) )
73, 6bitri 264 . . . 4  |-  ( << X ,  Y >>  =  << x ,  y >>  <->  ( x  =  X  /\  y  =  Y ) )
872rexbii 3042 . . 3  |-  ( E. x  e.  A  E. y  e.  B  << X ,  Y >>  =  << x ,  y >> 
<->  E. x  e.  A  E. y  e.  B  ( x  =  X  /\  y  =  Y
) )
9 risset 3062 . . . 4  |-  ( X  e.  A  <->  E. x  e.  A  x  =  X )
10 risset 3062 . . . 4  |-  ( Y  e.  B  <->  E. y  e.  B  y  =  Y )
119, 10anbi12i 733 . . 3  |-  ( ( X  e.  A  /\  Y  e.  B )  <->  ( E. x  e.  A  x  =  X  /\  E. y  e.  B  y  =  Y ) )
122, 8, 113bitr4i 292 . 2  |-  ( E. x  e.  A  E. y  e.  B  << X ,  Y >>  =  << x ,  y >> 
<->  ( X  e.  A  /\  Y  e.  B
) )
131, 12bitri 264 1  |-  ( << X ,  Y >>  e.  ( A  XX.  B )  <->  ( X  e.  A  /\  Y  e.  B )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   <<caltop 32063    XX. caltxp 32064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-altop 32065  df-altxp 32066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator