| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altxpsspw | Structured version Visualization version Unicode version | ||
| Description: An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| Ref | Expression |
|---|---|
| altxpsspw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elaltxp 32082 |
. . 3
| |
| 2 | df-altop 32065 |
. . . . . 6
| |
| 3 | snssi 4339 |
. . . . . . . . 9
| |
| 4 | ssun3 3778 |
. . . . . . . . 9
| |
| 5 | 3, 4 | syl 17 |
. . . . . . . 8
|
| 6 | 5 | adantr 481 |
. . . . . . 7
|
| 7 | elun1 3780 |
. . . . . . . . 9
| |
| 8 | snssi 4339 |
. . . . . . . . . 10
| |
| 9 | snex 4908 |
. . . . . . . . . . . 12
| |
| 10 | 9 | elpw 4164 |
. . . . . . . . . . 11
|
| 11 | elun2 3781 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | sylbir 225 |
. . . . . . . . . 10
|
| 13 | 8, 12 | syl 17 |
. . . . . . . . 9
|
| 14 | 7, 13 | anim12i 590 |
. . . . . . . 8
|
| 15 | vex 3203 |
. . . . . . . . 9
| |
| 16 | 15, 9 | prss 4351 |
. . . . . . . 8
|
| 17 | 14, 16 | sylib 208 |
. . . . . . 7
|
| 18 | prex 4909 |
. . . . . . . . 9
| |
| 19 | 18 | elpw 4164 |
. . . . . . . 8
|
| 20 | snex 4908 |
. . . . . . . . 9
| |
| 21 | prex 4909 |
. . . . . . . . 9
| |
| 22 | 20, 21 | prsspw 4376 |
. . . . . . . 8
|
| 23 | 19, 22 | bitri 264 |
. . . . . . 7
|
| 24 | 6, 17, 23 | sylanbrc 698 |
. . . . . 6
|
| 25 | 2, 24 | syl5eqel 2705 |
. . . . 5
|
| 26 | eleq1a 2696 |
. . . . 5
| |
| 27 | 25, 26 | syl 17 |
. . . 4
|
| 28 | 27 | rexlimivv 3036 |
. . 3
|
| 29 | 1, 28 | sylbi 207 |
. 2
|
| 30 | 29 | ssriv 3607 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-altop 32065 df-altxp 32066 |
| This theorem is referenced by: altxpexg 32085 |
| Copyright terms: Public domain | W3C validator |