Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpsspw Structured version   Visualization version   Unicode version

Theorem altxpsspw 32084
Description: An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpsspw  |-  ( A 
XX.  B )  C_  ~P ~P ( A  u.  ~P B )

Proof of Theorem altxpsspw
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elaltxp 32082 . . 3  |-  ( z  e.  ( A  XX.  B )  <->  E. x  e.  A  E. y  e.  B  z  =  << x ,  y >> )
2 df-altop 32065 . . . . . 6  |-  << x ,  y >>  =  { {
x } ,  {
x ,  { y } } }
3 snssi 4339 . . . . . . . . 9  |-  ( x  e.  A  ->  { x }  C_  A )
4 ssun3 3778 . . . . . . . . 9  |-  ( { x }  C_  A  ->  { x }  C_  ( A  u.  ~P B ) )
53, 4syl 17 . . . . . . . 8  |-  ( x  e.  A  ->  { x }  C_  ( A  u.  ~P B ) )
65adantr 481 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x }  C_  ( A  u.  ~P B ) )
7 elun1 3780 . . . . . . . . 9  |-  ( x  e.  A  ->  x  e.  ( A  u.  ~P B ) )
8 snssi 4339 . . . . . . . . . 10  |-  ( y  e.  B  ->  { y }  C_  B )
9 snex 4908 . . . . . . . . . . . 12  |-  { y }  e.  _V
109elpw 4164 . . . . . . . . . . 11  |-  ( { y }  e.  ~P B 
<->  { y }  C_  B )
11 elun2 3781 . . . . . . . . . . 11  |-  ( { y }  e.  ~P B  ->  { y }  e.  ( A  u.  ~P B ) )
1210, 11sylbir 225 . . . . . . . . . 10  |-  ( { y }  C_  B  ->  { y }  e.  ( A  u.  ~P B ) )
138, 12syl 17 . . . . . . . . 9  |-  ( y  e.  B  ->  { y }  e.  ( A  u.  ~P B ) )
147, 13anim12i 590 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  e.  ( A  u.  ~P B
)  /\  { y }  e.  ( A  u.  ~P B ) ) )
15 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
1615, 9prss 4351 . . . . . . . 8  |-  ( ( x  e.  ( A  u.  ~P B )  /\  { y }  e.  ( A  u.  ~P B ) )  <->  { x ,  { y } }  C_  ( A  u.  ~P B ) )
1714, 16sylib 208 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { x ,  {
y } }  C_  ( A  u.  ~P B ) )
18 prex 4909 . . . . . . . . 9  |-  { {
x } ,  {
x ,  { y } } }  e.  _V
1918elpw 4164 . . . . . . . 8  |-  ( { { x } ,  { x ,  {
y } } }  e.  ~P ~P ( A  u.  ~P B )  <->  { { x } ,  { x ,  {
y } } }  C_ 
~P ( A  u.  ~P B ) )
20 snex 4908 . . . . . . . . 9  |-  { x }  e.  _V
21 prex 4909 . . . . . . . . 9  |-  { x ,  { y } }  e.  _V
2220, 21prsspw 4376 . . . . . . . 8  |-  ( { { x } ,  { x ,  {
y } } }  C_ 
~P ( A  u.  ~P B )  <->  ( {
x }  C_  ( A  u.  ~P B
)  /\  { x ,  { y } }  C_  ( A  u.  ~P B ) ) )
2319, 22bitri 264 . . . . . . 7  |-  ( { { x } ,  { x ,  {
y } } }  e.  ~P ~P ( A  u.  ~P B )  <-> 
( { x }  C_  ( A  u.  ~P B )  /\  {
x ,  { y } }  C_  ( A  u.  ~P B
) ) )
246, 17, 23sylanbrc 698 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  ->  { { x } ,  { x ,  {
y } } }  e.  ~P ~P ( A  u.  ~P B ) )
252, 24syl5eqel 2705 . . . . 5  |-  ( ( x  e.  A  /\  y  e.  B )  -> 
<< x ,  y >>  e. 
~P ~P ( A  u.  ~P B ) )
26 eleq1a 2696 . . . . 5  |-  ( << x ,  y >>  e.  ~P ~P ( A  u.  ~P B )  ->  (
z  =  << x ,  y >>  ->  z  e.  ~P ~P ( A  u.  ~P B ) ) )
2725, 26syl 17 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  << x ,  y >>  ->  z  e.  ~P ~P ( A  u.  ~P B ) ) )
2827rexlimivv 3036 . . 3  |-  ( E. x  e.  A  E. y  e.  B  z  =  << x ,  y
>>  ->  z  e.  ~P ~P ( A  u.  ~P B ) )
291, 28sylbi 207 . 2  |-  ( z  e.  ( A  XX.  B )  ->  z  e.  ~P ~P ( A  u.  ~P B ) )
3029ssriv 3607 1  |-  ( A 
XX.  B )  C_  ~P ~P ( A  u.  ~P B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    u. cun 3572    C_ wss 3574   ~Pcpw 4158   {csn 4177   {cpr 4179   <<caltop 32063    XX. caltxp 32064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-altop 32065  df-altxp 32066
This theorem is referenced by:  altxpexg  32085
  Copyright terms: Public domain W3C validator