MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldiftp Structured version   Visualization version   Unicode version

Theorem eldiftp 4228
Description: Membership in a set with three elements removed. Similar to eldifsn 4317 and eldifpr 4204. (Contributed by David A. Wheeler, 22-Jul-2017.)
Assertion
Ref Expression
eldiftp  |-  ( A  e.  ( B  \  { C ,  D ,  E } )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D  /\  A  =/= 
E ) ) )

Proof of Theorem eldiftp
StepHypRef Expression
1 eldif 3584 . 2  |-  ( A  e.  ( B  \  { C ,  D ,  E } )  <->  ( A  e.  B  /\  -.  A  e.  { C ,  D ,  E } ) )
2 eltpg 4227 . . . . 5  |-  ( A  e.  B  ->  ( A  e.  { C ,  D ,  E }  <->  ( A  =  C  \/  A  =  D  \/  A  =  E )
) )
32notbid 308 . . . 4  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D ,  E }  <->  -.  ( A  =  C  \/  A  =  D  \/  A  =  E ) ) )
4 ne3anior 2887 . . . 4  |-  ( ( A  =/=  C  /\  A  =/=  D  /\  A  =/=  E )  <->  -.  ( A  =  C  \/  A  =  D  \/  A  =  E )
)
53, 4syl6bbr 278 . . 3  |-  ( A  e.  B  ->  ( -.  A  e.  { C ,  D ,  E }  <->  ( A  =/=  C  /\  A  =/=  D  /\  A  =/=  E ) ) )
65pm5.32i 669 . 2  |-  ( ( A  e.  B  /\  -.  A  e.  { C ,  D ,  E }
)  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D  /\  A  =/= 
E ) ) )
71, 6bitri 264 1  |-  ( A  e.  ( B  \  { C ,  D ,  E } )  <->  ( A  e.  B  /\  ( A  =/=  C  /\  A  =/=  D  /\  A  =/= 
E ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571   {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator