MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldiftp Structured version   Visualization version   GIF version

Theorem eldiftp 4228
Description: Membership in a set with three elements removed. Similar to eldifsn 4317 and eldifpr 4204. (Contributed by David A. Wheeler, 22-Jul-2017.)
Assertion
Ref Expression
eldiftp (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))

Proof of Theorem eldiftp
StepHypRef Expression
1 eldif 3584 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}))
2 eltpg 4227 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸)))
32notbid 308 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸)))
4 ne3anior 2887 . . . 4 ((𝐴𝐶𝐴𝐷𝐴𝐸) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸))
53, 4syl6bbr 278 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴𝐶𝐴𝐷𝐴𝐸)))
65pm5.32i 669 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
71, 6bitri 264 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384  w3o 1036  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cdif 3571  {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator