Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapintab Structured version   Visualization version   Unicode version

Theorem elmapintab 37902
Description: Two ways to say a set is an element of mapped intersection of a class. Here  F maps elements of  C to elements of  |^| { x  | 
ph } or  x. (Contributed by RP, 19-Aug-2020.)
Hypotheses
Ref Expression
elmapintab.1  |-  ( A  e.  B  <->  ( A  e.  C  /\  ( F `  A )  e.  |^| { x  | 
ph } ) )
elmapintab.2  |-  ( A  e.  E  <->  ( A  e.  C  /\  ( F `  A )  e.  x ) )
Assertion
Ref Expression
elmapintab  |-  ( A  e.  B  <->  ( A  e.  C  /\  A. x
( ph  ->  A  e.  E ) ) )
Distinct variable groups:    x, A    x, C    x, F
Allowed substitution hints:    ph( x)    B( x)    E( x)

Proof of Theorem elmapintab
StepHypRef Expression
1 elmapintab.1 . 2  |-  ( A  e.  B  <->  ( A  e.  C  /\  ( F `  A )  e.  |^| { x  | 
ph } ) )
2 fvex 6201 . . . 4  |-  ( F `
 A )  e. 
_V
32elintab 4487 . . 3  |-  ( ( F `  A )  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  ( F `
 A )  e.  x ) )
43anbi2i 730 . 2  |-  ( ( A  e.  C  /\  ( F `  A )  e.  |^| { x  | 
ph } )  <->  ( A  e.  C  /\  A. x
( ph  ->  ( F `
 A )  e.  x ) ) )
5 elmapintab.2 . . . . . 6  |-  ( A  e.  E  <->  ( A  e.  C  /\  ( F `  A )  e.  x ) )
65baibr 945 . . . . 5  |-  ( A  e.  C  ->  (
( F `  A
)  e.  x  <->  A  e.  E ) )
76imbi2d 330 . . . 4  |-  ( A  e.  C  ->  (
( ph  ->  ( F `
 A )  e.  x )  <->  ( ph  ->  A  e.  E ) ) )
87albidv 1849 . . 3  |-  ( A  e.  C  ->  ( A. x ( ph  ->  ( F `  A )  e.  x )  <->  A. x
( ph  ->  A  e.  E ) ) )
98pm5.32i 669 . 2  |-  ( ( A  e.  C  /\  A. x ( ph  ->  ( F `  A )  e.  x ) )  <-> 
( A  e.  C  /\  A. x ( ph  ->  A  e.  E ) ) )
101, 4, 93bitri 286 1  |-  ( A  e.  B  <->  ( A  e.  C  /\  A. x
( ph  ->  A  e.  E ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   {cab 2608   |^|cint 4475   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-int 4476  df-iota 5851  df-fv 5896
This theorem is referenced by:  elcnvintab  37908
  Copyright terms: Public domain W3C validator