Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cononrel2 Structured version   Visualization version   Unicode version

Theorem cononrel2 37901
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cononrel2  |-  ( A  o.  ( B  \  `' `' B ) )  =  (/)

Proof of Theorem cononrel2
StepHypRef Expression
1 cnvco 5308 . . . 4  |-  `' ( A  o.  ( B 
\  `' `' B
) )  =  ( `' ( B  \  `' `' B )  o.  `' A )
2 cnvnonrel 37894 . . . . 5  |-  `' ( B  \  `' `' B )  =  (/)
32coeq1i 5281 . . . 4  |-  ( `' ( B  \  `' `' B )  o.  `' A )  =  (
(/)  o.  `' A
)
4 co01 5650 . . . 4  |-  ( (/)  o.  `' A )  =  (/)
51, 3, 43eqtri 2648 . . 3  |-  `' ( A  o.  ( B 
\  `' `' B
) )  =  (/)
65cnveqi 5297 . 2  |-  `' `' ( A  o.  ( B  \  `' `' B
) )  =  `' (/)
7 relco 5633 . . 3  |-  Rel  ( A  o.  ( B  \  `' `' B ) )
8 dfrel2 5583 . . 3  |-  ( Rel  ( A  o.  ( B  \  `' `' B
) )  <->  `' `' ( A  o.  ( B  \  `' `' B
) )  =  ( A  o.  ( B 
\  `' `' B
) ) )
97, 8mpbi 220 . 2  |-  `' `' ( A  o.  ( B  \  `' `' B
) )  =  ( A  o.  ( B 
\  `' `' B
) )
10 cnv0 5535 . 2  |-  `' (/)  =  (/)
116, 9, 103eqtr3i 2652 1  |-  ( A  o.  ( B  \  `' `' B ) )  =  (/)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    \ cdif 3571   (/)c0 3915   `'ccnv 5113    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123
This theorem is referenced by:  cnvtrcl0  37933
  Copyright terms: Public domain W3C validator