MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo1 Structured version   Visualization version   Unicode version

Theorem elo1 14257
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
elo1  |-  ( F  e.  O(1)  <->  ( F  e.  ( CC  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( abs `  ( F `  y
) )  <_  m
) )
Distinct variable group:    x, m, y, F

Proof of Theorem elo1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 dmeq 5324 . . . . 5  |-  ( f  =  F  ->  dom  f  =  dom  F )
21ineq1d 3813 . . . 4  |-  ( f  =  F  ->  ( dom  f  i^i  (
x [,) +oo )
)  =  ( dom 
F  i^i  ( x [,) +oo ) ) )
3 fveq1 6190 . . . . . 6  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
43fveq2d 6195 . . . . 5  |-  ( f  =  F  ->  ( abs `  ( f `  y ) )  =  ( abs `  ( F `  y )
) )
54breq1d 4663 . . . 4  |-  ( f  =  F  ->  (
( abs `  (
f `  y )
)  <_  m  <->  ( abs `  ( F `  y
) )  <_  m
) )
62, 5raleqbidv 3152 . . 3  |-  ( f  =  F  ->  ( A. y  e.  ( dom  f  i^i  (
x [,) +oo )
) ( abs `  (
f `  y )
)  <_  m  <->  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( abs `  ( F `  y
) )  <_  m
) )
762rexbidv 3057 . 2  |-  ( f  =  F  ->  ( E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( abs `  ( f `  y
) )  <_  m  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( abs `  ( F `  y
) )  <_  m
) )
8 df-o1 14221 . 2  |-  O(1)  =  {
f  e.  ( CC 
^pm  RR )  |  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  f  i^i  ( x [,) +oo ) ) ( abs `  ( f `  y
) )  <_  m }
97, 8elrab2 3366 1  |-  ( F  e.  O(1)  <->  ( F  e.  ( CC  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,) +oo ) ) ( abs `  ( F `  y
) )  <_  m
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573   class class class wbr 4653   dom cdm 5114   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   +oocpnf 10071    <_ cle 10075   [,)cico 12177   abscabs 13974   O(1)co1 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-o1 14221
This theorem is referenced by:  elo12  14258  o1f  14260  o1dm  14261
  Copyright terms: Public domain W3C validator