MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopabr Structured version   Visualization version   Unicode version

Theorem elopabr 5013
Description: Membership in a class abstraction of pairs, defined by a binary relation. (Contributed by AV, 16-Feb-2021.)
Assertion
Ref Expression
elopabr  |-  ( A  e.  { <. x ,  y >.  |  x R y }  ->  A  e.  R )
Distinct variable groups:    x, A, y    x, R, y

Proof of Theorem elopabr
StepHypRef Expression
1 elopab 4983 . 2  |-  ( A  e.  { <. x ,  y >.  |  x R y }  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  x R y ) )
2 df-br 4654 . . . . . 6  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
32biimpi 206 . . . . 5  |-  ( x R y  ->  <. x ,  y >.  e.  R
)
4 eleq1 2689 . . . . 5  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  R  <->  <. x ,  y
>.  e.  R ) )
53, 4syl5ibr 236 . . . 4  |-  ( A  =  <. x ,  y
>.  ->  ( x R y  ->  A  e.  R ) )
65imp 445 . . 3  |-  ( ( A  =  <. x ,  y >.  /\  x R y )  ->  A  e.  R )
76exlimivv 1860 . 2  |-  ( E. x E. y ( A  =  <. x ,  y >.  /\  x R y )  ->  A  e.  R )
81, 7sylbi 207 1  |-  ( A  e.  { <. x ,  y >.  |  x R y }  ->  A  e.  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   <.cop 4183   class class class wbr 4653   {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713
This theorem is referenced by:  elopabran  5014
  Copyright terms: Public domain W3C validator