Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elprn1 Structured version   Visualization version   Unicode version

Theorem elprn1 39865
Description: A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elprn1  |-  ( ( A  e.  { B ,  C }  /\  A  =/=  B )  ->  A  =  C )

Proof of Theorem elprn1
StepHypRef Expression
1 neneq 2800 . . 3  |-  ( A  =/=  B  ->  -.  A  =  B )
21adantl 482 . 2  |-  ( ( A  e.  { B ,  C }  /\  A  =/=  B )  ->  -.  A  =  B )
3 elpri 4197 . . . 4  |-  ( A  e.  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
43adantr 481 . . 3  |-  ( ( A  e.  { B ,  C }  /\  A  =/=  B )  ->  ( A  =  B  \/  A  =  C )
)
54ord 392 . 2  |-  ( ( A  e.  { B ,  C }  /\  A  =/=  B )  ->  ( -.  A  =  B  ->  A  =  C ) )
62, 5mpd 15 1  |-  ( ( A  e.  { B ,  C }  /\  A  =/=  B )  ->  A  =  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by:  fourierdlem70  40393  fourierdlem71  40394  fouriersw  40448  prsal  40538  sge0pr  40611
  Copyright terms: Public domain W3C validator