Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0pr Structured version   Visualization version   Unicode version

Theorem sge0pr 40611
Description: Sum of a pair of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0pr.a  |-  ( ph  ->  A  e.  V )
sge0pr.b  |-  ( ph  ->  B  e.  W )
sge0pr.d  |-  ( ph  ->  D  e.  ( 0 [,] +oo ) )
sge0pr.e  |-  ( ph  ->  E  e.  ( 0 [,] +oo ) )
sge0pr.cd  |-  ( k  =  A  ->  C  =  D )
sge0pr.ce  |-  ( k  =  B  ->  C  =  E )
sge0pr.ab  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
sge0pr  |-  ( ph  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  =  ( D +e
E ) )
Distinct variable groups:    A, k    B, k    D, k    k, E   
k, V    k, W    ph, k
Allowed substitution hint:    C( k)

Proof of Theorem sge0pr
StepHypRef Expression
1 iccssxr 12256 . . . . . . 7  |-  ( 0 [,] +oo )  C_  RR*
2 sge0pr.e . . . . . . 7  |-  ( ph  ->  E  e.  ( 0 [,] +oo ) )
31, 2sseldi 3601 . . . . . 6  |-  ( ph  ->  E  e.  RR* )
4 mnfxr 10096 . . . . . . . 8  |- -oo  e.  RR*
54a1i 11 . . . . . . 7  |-  ( ph  -> -oo  e.  RR* )
6 0xr 10086 . . . . . . . . 9  |-  0  e.  RR*
76a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  RR* )
8 mnflt0 11959 . . . . . . . . 9  |- -oo  <  0
98a1i 11 . . . . . . . 8  |-  ( ph  -> -oo  <  0 )
10 pnfxr 10092 . . . . . . . . . 10  |- +oo  e.  RR*
1110a1i 11 . . . . . . . . 9  |-  ( ph  -> +oo  e.  RR* )
12 iccgelb 12230 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  E  e.  ( 0 [,] +oo ) )  ->  0  <_  E )
137, 11, 2, 12syl3anc 1326 . . . . . . . 8  |-  ( ph  ->  0  <_  E )
145, 7, 3, 9, 13xrltletrd 11992 . . . . . . 7  |-  ( ph  -> -oo  <  E )
155, 3, 14xrgtned 39538 . . . . . 6  |-  ( ph  ->  E  =/= -oo )
16 xaddpnf2 12058 . . . . . 6  |-  ( ( E  e.  RR*  /\  E  =/= -oo )  ->  ( +oo +e E )  = +oo )
173, 15, 16syl2anc 693 . . . . 5  |-  ( ph  ->  ( +oo +e
E )  = +oo )
1817eqcomd 2628 . . . 4  |-  ( ph  -> +oo  =  ( +oo +e E ) )
1918adantr 481 . . 3  |-  ( (
ph  /\  D  = +oo )  -> +oo  =  ( +oo +e E ) )
20 prex 4909 . . . . 5  |-  { A ,  B }  e.  _V
2120a1i 11 . . . 4  |-  ( (
ph  /\  D  = +oo )  ->  { A ,  B }  e.  _V )
22 sge0pr.cd . . . . . . . . . 10  |-  ( k  =  A  ->  C  =  D )
2322adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  k  =  A )  ->  C  =  D )
24 sge0pr.d . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( 0 [,] +oo ) )
2524adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  =  A )  ->  D  e.  ( 0 [,] +oo ) )
2623, 25eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  k  =  A )  ->  C  e.  ( 0 [,] +oo ) )
2726adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  { A ,  B } )  /\  k  =  A )  ->  C  e.  ( 0 [,] +oo ) )
28 simpll 790 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  { A ,  B } )  /\  -.  k  =  A )  ->  ph )
29 simpl 473 . . . . . . . . . 10  |-  ( ( k  e.  { A ,  B }  /\  -.  k  =  A )  ->  k  e.  { A ,  B } )
30 neqne 2802 . . . . . . . . . . 11  |-  ( -.  k  =  A  -> 
k  =/=  A )
3130adantl 482 . . . . . . . . . 10  |-  ( ( k  e.  { A ,  B }  /\  -.  k  =  A )  ->  k  =/=  A )
32 elprn1 39865 . . . . . . . . . 10  |-  ( ( k  e.  { A ,  B }  /\  k  =/=  A )  ->  k  =  B )
3329, 31, 32syl2anc 693 . . . . . . . . 9  |-  ( ( k  e.  { A ,  B }  /\  -.  k  =  A )  ->  k  =  B )
3433adantll 750 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  { A ,  B } )  /\  -.  k  =  A )  ->  k  =  B )
35 sge0pr.ce . . . . . . . . . 10  |-  ( k  =  B  ->  C  =  E )
3635adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  k  =  B )  ->  C  =  E )
372adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  =  B )  ->  E  e.  ( 0 [,] +oo ) )
3836, 37eqeltrd 2701 . . . . . . . 8  |-  ( (
ph  /\  k  =  B )  ->  C  e.  ( 0 [,] +oo ) )
3928, 34, 38syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  { A ,  B } )  /\  -.  k  =  A )  ->  C  e.  ( 0 [,] +oo ) )
4027, 39pm2.61dan 832 . . . . . 6  |-  ( (
ph  /\  k  e.  { A ,  B }
)  ->  C  e.  ( 0 [,] +oo ) )
41 eqid 2622 . . . . . 6  |-  ( k  e.  { A ,  B }  |->  C )  =  ( k  e. 
{ A ,  B }  |->  C )
4240, 41fmptd 6385 . . . . 5  |-  ( ph  ->  ( k  e.  { A ,  B }  |->  C ) : { A ,  B } --> ( 0 [,] +oo ) )
4342adantr 481 . . . 4  |-  ( (
ph  /\  D  = +oo )  ->  ( k  e.  { A ,  B }  |->  C ) : { A ,  B } --> ( 0 [,] +oo ) )
44 id 22 . . . . . . 7  |-  ( D  = +oo  ->  D  = +oo )
4544eqcomd 2628 . . . . . 6  |-  ( D  = +oo  -> +oo  =  D )
4645adantl 482 . . . . 5  |-  ( (
ph  /\  D  = +oo )  -> +oo  =  D )
47 prid1g 4295 . . . . . . . 8  |-  ( D  e.  ( 0 [,] +oo )  ->  D  e. 
{ D ,  E } )
4824, 47syl 17 . . . . . . 7  |-  ( ph  ->  D  e.  { D ,  E } )
49 sge0pr.a . . . . . . . . 9  |-  ( ph  ->  A  e.  V )
50 sge0pr.b . . . . . . . . 9  |-  ( ph  ->  B  e.  W )
5149, 50, 41, 22, 35rnmptpr 39358 . . . . . . . 8  |-  ( ph  ->  ran  ( k  e. 
{ A ,  B }  |->  C )  =  { D ,  E } )
5251eqcomd 2628 . . . . . . 7  |-  ( ph  ->  { D ,  E }  =  ran  ( k  e.  { A ,  B }  |->  C ) )
5348, 52eleqtrd 2703 . . . . . 6  |-  ( ph  ->  D  e.  ran  (
k  e.  { A ,  B }  |->  C ) )
5453adantr 481 . . . . 5  |-  ( (
ph  /\  D  = +oo )  ->  D  e. 
ran  ( k  e. 
{ A ,  B }  |->  C ) )
5546, 54eqeltrd 2701 . . . 4  |-  ( (
ph  /\  D  = +oo )  -> +oo  e.  ran  ( k  e.  { A ,  B }  |->  C ) )
5621, 43, 55sge0pnfval 40590 . . 3  |-  ( (
ph  /\  D  = +oo )  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  = +oo )
57 oveq1 6657 . . . 4  |-  ( D  = +oo  ->  ( D +e E )  =  ( +oo +e E ) )
5857adantl 482 . . 3  |-  ( (
ph  /\  D  = +oo )  ->  ( D +e E )  =  ( +oo +e E ) )
5919, 56, 583eqtr4d 2666 . 2  |-  ( (
ph  /\  D  = +oo )  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  =  ( D +e
E ) )
601, 24sseldi 3601 . . . . . . . 8  |-  ( ph  ->  D  e.  RR* )
61 iccgelb 12230 . . . . . . . . . . 11  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR*  /\  D  e.  ( 0 [,] +oo ) )  ->  0  <_  D )
627, 11, 24, 61syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  0  <_  D )
635, 7, 60, 9, 62xrltletrd 11992 . . . . . . . . 9  |-  ( ph  -> -oo  <  D )
645, 60, 63xrgtned 39538 . . . . . . . 8  |-  ( ph  ->  D  =/= -oo )
65 xaddpnf1 12057 . . . . . . . 8  |-  ( ( D  e.  RR*  /\  D  =/= -oo )  ->  ( D +e +oo )  = +oo )
6660, 64, 65syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( D +e +oo )  = +oo )
6766eqcomd 2628 . . . . . 6  |-  ( ph  -> +oo  =  ( D +e +oo )
)
6867adantr 481 . . . . 5  |-  ( (
ph  /\  E  = +oo )  -> +oo  =  ( D +e +oo ) )
6920a1i 11 . . . . . 6  |-  ( (
ph  /\  E  = +oo )  ->  { A ,  B }  e.  _V )
7042adantr 481 . . . . . 6  |-  ( (
ph  /\  E  = +oo )  ->  ( k  e.  { A ,  B }  |->  C ) : { A ,  B } --> ( 0 [,] +oo ) )
71 id 22 . . . . . . . . 9  |-  ( E  = +oo  ->  E  = +oo )
7271eqcomd 2628 . . . . . . . 8  |-  ( E  = +oo  -> +oo  =  E )
7372adantl 482 . . . . . . 7  |-  ( (
ph  /\  E  = +oo )  -> +oo  =  E )
74 prid2g 4296 . . . . . . . . . 10  |-  ( E  e.  ( 0 [,] +oo )  ->  E  e. 
{ D ,  E } )
752, 74syl 17 . . . . . . . . 9  |-  ( ph  ->  E  e.  { D ,  E } )
7675, 52eleqtrd 2703 . . . . . . . 8  |-  ( ph  ->  E  e.  ran  (
k  e.  { A ,  B }  |->  C ) )
7776adantr 481 . . . . . . 7  |-  ( (
ph  /\  E  = +oo )  ->  E  e. 
ran  ( k  e. 
{ A ,  B }  |->  C ) )
7873, 77eqeltrd 2701 . . . . . 6  |-  ( (
ph  /\  E  = +oo )  -> +oo  e.  ran  ( k  e.  { A ,  B }  |->  C ) )
7969, 70, 78sge0pnfval 40590 . . . . 5  |-  ( (
ph  /\  E  = +oo )  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  = +oo )
80 oveq2 6658 . . . . . 6  |-  ( E  = +oo  ->  ( D +e E )  =  ( D +e +oo ) )
8180adantl 482 . . . . 5  |-  ( (
ph  /\  E  = +oo )  ->  ( D +e E )  =  ( D +e +oo ) )
8268, 79, 813eqtr4d 2666 . . . 4  |-  ( (
ph  /\  E  = +oo )  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  =  ( D +e
E ) )
8382adantlr 751 . . 3  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  E  = +oo )  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  =  ( D +e
E ) )
84 rge0ssre 12280 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR
85 ax-resscn 9993 . . . . . . . 8  |-  RR  C_  CC
8684, 85sstri 3612 . . . . . . 7  |-  ( 0 [,) +oo )  C_  CC
876a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  D  = +oo )  ->  0  e.  RR* )
8810a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  D  = +oo )  -> +oo  e.  RR* )
8960adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  D  = +oo )  ->  D  e.  RR* )
9062adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  D  = +oo )  ->  0  <_  D )
91 pnfge 11964 . . . . . . . . . . . 12  |-  ( D  e.  RR*  ->  D  <_ +oo )
9260, 91syl 17 . . . . . . . . . . 11  |-  ( ph  ->  D  <_ +oo )
9392adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  D  = +oo )  ->  D  <_ +oo )
9444necon3bi 2820 . . . . . . . . . . 11  |-  ( -.  D  = +oo  ->  D  =/= +oo )
9594adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  -.  D  = +oo )  ->  D  =/= +oo )
9689, 88, 93, 95xrleneltd 39539 . . . . . . . . 9  |-  ( (
ph  /\  -.  D  = +oo )  ->  D  < +oo )
9787, 88, 89, 90, 96elicod 12224 . . . . . . . 8  |-  ( (
ph  /\  -.  D  = +oo )  ->  D  e.  ( 0 [,) +oo ) )
9897adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  D  e.  ( 0 [,) +oo )
)
9986, 98sseldi 3601 . . . . . 6  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  D  e.  CC )
1006a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  E  = +oo )  ->  0  e.  RR* )
10110a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  -.  E  = +oo )  -> +oo  e.  RR* )
1023adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  E  = +oo )  ->  E  e.  RR* )
10313adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  -.  E  = +oo )  ->  0  <_  E )
104 pnfge 11964 . . . . . . . . . . . 12  |-  ( E  e.  RR*  ->  E  <_ +oo )
1053, 104syl 17 . . . . . . . . . . 11  |-  ( ph  ->  E  <_ +oo )
106105adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  -.  E  = +oo )  ->  E  <_ +oo )
10771necon3bi 2820 . . . . . . . . . . 11  |-  ( -.  E  = +oo  ->  E  =/= +oo )
108107adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  -.  E  = +oo )  ->  E  =/= +oo )
109102, 101, 106, 108xrleneltd 39539 . . . . . . . . 9  |-  ( (
ph  /\  -.  E  = +oo )  ->  E  < +oo )
110100, 101, 102, 103, 109elicod 12224 . . . . . . . 8  |-  ( (
ph  /\  -.  E  = +oo )  ->  E  e.  ( 0 [,) +oo ) )
11186, 110sseldi 3601 . . . . . . 7  |-  ( (
ph  /\  -.  E  = +oo )  ->  E  e.  CC )
112111adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  E  e.  CC )
11399, 112jca 554 . . . . 5  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  ( D  e.  CC  /\  E  e.  CC ) )
11449, 50jca 554 . . . . . 6  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
115114ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  ( A  e.  V  /\  B  e.  W ) )
116 sge0pr.ab . . . . . 6  |-  ( ph  ->  A  =/=  B )
117116ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  A  =/=  B
)
11822, 35, 113, 115, 117sumpr 14477 . . . 4  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  sum_ k  e.  { A ,  B } C  =  ( D  +  E ) )
119 prfi 8235 . . . . . 6  |-  { A ,  B }  e.  Fin
120119a1i 11 . . . . 5  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  { A ,  B }  e.  Fin )
12122adantl 482 . . . . . . . 8  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  k  =  A
)  ->  C  =  D )
12297adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  k  =  A
)  ->  D  e.  ( 0 [,) +oo ) )
123121, 122eqeltrd 2701 . . . . . . 7  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  k  =  A
)  ->  C  e.  ( 0 [,) +oo ) )
124123ad4ant14 1293 . . . . . 6  |-  ( ( ( ( ( ph  /\ 
-.  D  = +oo )  /\  -.  E  = +oo )  /\  k  e.  { A ,  B } )  /\  k  =  A )  ->  C  e.  ( 0 [,) +oo ) )
125 simp-4l 806 . . . . . . 7  |-  ( ( ( ( ( ph  /\ 
-.  D  = +oo )  /\  -.  E  = +oo )  /\  k  e.  { A ,  B } )  /\  -.  k  =  A )  ->  ph )
126 simpllr 799 . . . . . . 7  |-  ( ( ( ( ( ph  /\ 
-.  D  = +oo )  /\  -.  E  = +oo )  /\  k  e.  { A ,  B } )  /\  -.  k  =  A )  ->  -.  E  = +oo )
12733adantll 750 . . . . . . 7  |-  ( ( ( ( ( ph  /\ 
-.  D  = +oo )  /\  -.  E  = +oo )  /\  k  e.  { A ,  B } )  /\  -.  k  =  A )  ->  k  =  B )
128363adant2 1080 . . . . . . . 8  |-  ( (
ph  /\  -.  E  = +oo  /\  k  =  B )  ->  C  =  E )
1291103adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  -.  E  = +oo  /\  k  =  B )  ->  E  e.  ( 0 [,) +oo ) )
130128, 129eqeltrd 2701 . . . . . . 7  |-  ( (
ph  /\  -.  E  = +oo  /\  k  =  B )  ->  C  e.  ( 0 [,) +oo ) )
131125, 126, 127, 130syl3anc 1326 . . . . . 6  |-  ( ( ( ( ( ph  /\ 
-.  D  = +oo )  /\  -.  E  = +oo )  /\  k  e.  { A ,  B } )  /\  -.  k  =  A )  ->  C  e.  ( 0 [,) +oo ) )
132124, 131pm2.61dan 832 . . . . 5  |-  ( ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  /\  k  e.  { A ,  B } )  ->  C  e.  ( 0 [,) +oo ) )
133120, 132sge0fsummpt 40607 . . . 4  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  = 
sum_ k  e.  { A ,  B } C )
13484, 98sseldi 3601 . . . . 5  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  D  e.  RR )
13584, 110sseldi 3601 . . . . . 6  |-  ( (
ph  /\  -.  E  = +oo )  ->  E  e.  RR )
136135adantlr 751 . . . . 5  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  E  e.  RR )
137 rexadd 12063 . . . . 5  |-  ( ( D  e.  RR  /\  E  e.  RR )  ->  ( D +e
E )  =  ( D  +  E ) )
138134, 136, 137syl2anc 693 . . . 4  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  ( D +e E )  =  ( D  +  E
) )
139118, 133, 1383eqtr4d 2666 . . 3  |-  ( ( ( ph  /\  -.  D  = +oo )  /\  -.  E  = +oo )  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  =  ( D +e
E ) )
14083, 139pm2.61dan 832 . 2  |-  ( (
ph  /\  -.  D  = +oo )  ->  (Σ^ `  (
k  e.  { A ,  B }  |->  C ) )  =  ( D +e E ) )
14159, 140pm2.61dan 832 1  |-  ( ph  ->  (Σ^ `  ( k  e.  { A ,  B }  |->  C ) )  =  ( D +e
E ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   {cpr 4179   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   +ecxad 11944   [,)cico 12177   [,]cicc 12178   sum_csu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0prle  40618  meadjun  40679  ovnsubadd2lem  40859
  Copyright terms: Public domain W3C validator