Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrn3 Structured version   Visualization version   Unicode version

Theorem elrn3 31652
Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.)
Assertion
Ref Expression
elrn3  |-  ( A  e.  ran  B  <->  ( B  i^i  ( _V  X.  { A } ) )  =/=  (/) )

Proof of Theorem elrn3
StepHypRef Expression
1 df-rn 5125 . . 3  |-  ran  B  =  dom  `' B
21eleq2i 2693 . 2  |-  ( A  e.  ran  B  <->  A  e.  dom  `' B )
3 eldm3 31651 . 2  |-  ( A  e.  dom  `' B  <->  ( `' B  |`  { A } )  =/=  (/) )
4 cnvxp 5551 . . . . . . 7  |-  `' ( _V  X.  { A } )  =  ( { A }  X.  _V )
54ineq2i 3811 . . . . . 6  |-  ( `' B  i^i  `' ( _V  X.  { A } ) )  =  ( `' B  i^i  ( { A }  X.  _V ) )
6 cnvin 5540 . . . . . 6  |-  `' ( B  i^i  ( _V 
X.  { A }
) )  =  ( `' B  i^i  `' ( _V  X.  { A } ) )
7 df-res 5126 . . . . . 6  |-  ( `' B  |`  { A } )  =  ( `' B  i^i  ( { A }  X.  _V ) )
85, 6, 73eqtr4ri 2655 . . . . 5  |-  ( `' B  |`  { A } )  =  `' ( B  i^i  ( _V  X.  { A }
) )
98eqeq1i 2627 . . . 4  |-  ( ( `' B  |`  { A } )  =  (/)  <->  `' ( B  i^i  ( _V  X.  { A }
) )  =  (/) )
10 inss2 3834 . . . . . 6  |-  ( B  i^i  ( _V  X.  { A } ) ) 
C_  ( _V  X.  { A } )
11 relxp 5227 . . . . . 6  |-  Rel  ( _V  X.  { A }
)
12 relss 5206 . . . . . 6  |-  ( ( B  i^i  ( _V 
X.  { A }
) )  C_  ( _V  X.  { A }
)  ->  ( Rel  ( _V  X.  { A } )  ->  Rel  ( B  i^i  ( _V  X.  { A }
) ) ) )
1310, 11, 12mp2 9 . . . . 5  |-  Rel  ( B  i^i  ( _V  X.  { A } ) )
14 cnveq0 5591 . . . . 5  |-  ( Rel  ( B  i^i  ( _V  X.  { A }
) )  ->  (
( B  i^i  ( _V  X.  { A }
) )  =  (/)  <->  `' ( B  i^i  ( _V  X.  { A }
) )  =  (/) ) )
1513, 14ax-mp 5 . . . 4  |-  ( ( B  i^i  ( _V 
X.  { A }
) )  =  (/)  <->  `' ( B  i^i  ( _V  X.  { A }
) )  =  (/) )
169, 15bitr4i 267 . . 3  |-  ( ( `' B  |`  { A } )  =  (/)  <->  ( B  i^i  ( _V  X.  { A } ) )  =  (/) )
1716necon3bii 2846 . 2  |-  ( ( `' B  |`  { A } )  =/=  (/)  <->  ( B  i^i  ( _V  X.  { A } ) )  =/=  (/) )
182, 3, 173bitri 286 1  |-  ( A  e.  ran  B  <->  ( B  i^i  ( _V  X.  { A } ) )  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    |` cres 5116   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator