MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsnxpOLD Structured version   Visualization version   Unicode version

Theorem elsnxpOLD 5678
Description: Obsolete proof of elsnxp 5677 as of 14-Jul-2021. (Contributed by Thierry Arnoux, 10-Apr-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
elsnxpOLD  |-  ( X  e.  V  ->  ( Z  e.  ( { X }  X.  A
)  <->  E. y  e.  A  Z  =  <. X , 
y >. ) )
Distinct variable groups:    y, A    y, V    y, X    y, Z

Proof of Theorem elsnxpOLD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elxp 5131 . . . 4  |-  ( Z  e.  ( { X }  X.  A )  <->  E. x E. y ( Z  = 
<. x ,  y >.  /\  ( x  e.  { X }  /\  y  e.  A ) ) )
2 df-rex 2918 . . . . . . . 8  |-  ( E. y  e.  A  ( x  e.  { X }  /\  Z  =  <. x ,  y >. )  <->  E. y ( y  e.  A  /\  ( x  e.  { X }  /\  Z  =  <. x ,  y >. )
) )
3 an13 840 . . . . . . . . 9  |-  ( ( Z  =  <. x ,  y >.  /\  (
x  e.  { X }  /\  y  e.  A
) )  <->  ( y  e.  A  /\  (
x  e.  { X }  /\  Z  =  <. x ,  y >. )
) )
43exbii 1774 . . . . . . . 8  |-  ( E. y ( Z  = 
<. x ,  y >.  /\  ( x  e.  { X }  /\  y  e.  A ) )  <->  E. y
( y  e.  A  /\  ( x  e.  { X }  /\  Z  = 
<. x ,  y >.
) ) )
52, 4bitr4i 267 . . . . . . 7  |-  ( E. y  e.  A  ( x  e.  { X }  /\  Z  =  <. x ,  y >. )  <->  E. y ( Z  = 
<. x ,  y >.  /\  ( x  e.  { X }  /\  y  e.  A ) ) )
6 velsn 4193 . . . . . . . . . 10  |-  ( x  e.  { X }  <->  x  =  X )
76anbi1i 731 . . . . . . . . 9  |-  ( ( x  e.  { X }  /\  Z  =  <. x ,  y >. )  <->  ( x  =  X  /\  Z  =  <. x ,  y >. ) )
8 simpr 477 . . . . . . . . . 10  |-  ( ( x  =  X  /\  Z  =  <. x ,  y >. )  ->  Z  =  <. x ,  y
>. )
9 opeq1 4402 . . . . . . . . . . 11  |-  ( x  =  X  ->  <. x ,  y >.  =  <. X ,  y >. )
109adantr 481 . . . . . . . . . 10  |-  ( ( x  =  X  /\  Z  =  <. x ,  y >. )  ->  <. x ,  y >.  =  <. X ,  y >. )
118, 10eqtrd 2656 . . . . . . . . 9  |-  ( ( x  =  X  /\  Z  =  <. x ,  y >. )  ->  Z  =  <. X ,  y
>. )
127, 11sylbi 207 . . . . . . . 8  |-  ( ( x  e.  { X }  /\  Z  =  <. x ,  y >. )  ->  Z  =  <. X , 
y >. )
1312reximi 3011 . . . . . . 7  |-  ( E. y  e.  A  ( x  e.  { X }  /\  Z  =  <. x ,  y >. )  ->  E. y  e.  A  Z  =  <. X , 
y >. )
145, 13sylbir 225 . . . . . 6  |-  ( E. y ( Z  = 
<. x ,  y >.  /\  ( x  e.  { X }  /\  y  e.  A ) )  ->  E. y  e.  A  Z  =  <. X , 
y >. )
1514eximi 1762 . . . . 5  |-  ( E. x E. y ( Z  =  <. x ,  y >.  /\  (
x  e.  { X }  /\  y  e.  A
) )  ->  E. x E. y  e.  A  Z  =  <. X , 
y >. )
16 19.9v 1896 . . . . 5  |-  ( E. x E. y  e.  A  Z  =  <. X ,  y >.  <->  E. y  e.  A  Z  =  <. X ,  y >.
)
1715, 16sylib 208 . . . 4  |-  ( E. x E. y ( Z  =  <. x ,  y >.  /\  (
x  e.  { X }  /\  y  e.  A
) )  ->  E. y  e.  A  Z  =  <. X ,  y >.
)
181, 17sylbi 207 . . 3  |-  ( Z  e.  ( { X }  X.  A )  ->  E. y  e.  A  Z  =  <. X , 
y >. )
1918adantl 482 . 2  |-  ( ( X  e.  V  /\  Z  e.  ( { X }  X.  A
) )  ->  E. y  e.  A  Z  =  <. X ,  y >.
)
20 nfv 1843 . . . 4  |-  F/ y  X  e.  V
21 nfre1 3005 . . . 4  |-  F/ y E. y  e.  A  Z  =  <. X , 
y >.
2220, 21nfan 1828 . . 3  |-  F/ y ( X  e.  V  /\  E. y  e.  A  Z  =  <. X , 
y >. )
23 simpr 477 . . . . 5  |-  ( ( ( X  e.  V  /\  y  e.  A
)  /\  Z  =  <. X ,  y >.
)  ->  Z  =  <. X ,  y >.
)
24 snidg 4206 . . . . . . . 8  |-  ( X  e.  V  ->  X  e.  { X } )
2524adantr 481 . . . . . . 7  |-  ( ( X  e.  V  /\  y  e.  A )  ->  X  e.  { X } )
26 simpr 477 . . . . . . 7  |-  ( ( X  e.  V  /\  y  e.  A )  ->  y  e.  A )
27 opelxp 5146 . . . . . . . 8  |-  ( <. X ,  y >.  e.  ( { X }  X.  A )  <->  ( X  e.  { X }  /\  y  e.  A )
)
2827biimpri 218 . . . . . . 7  |-  ( ( X  e.  { X }  /\  y  e.  A
)  ->  <. X , 
y >.  e.  ( { X }  X.  A
) )
2925, 26, 28syl2anc 693 . . . . . 6  |-  ( ( X  e.  V  /\  y  e.  A )  -> 
<. X ,  y >.  e.  ( { X }  X.  A ) )
3029adantr 481 . . . . 5  |-  ( ( ( X  e.  V  /\  y  e.  A
)  /\  Z  =  <. X ,  y >.
)  ->  <. X , 
y >.  e.  ( { X }  X.  A
) )
3123, 30eqeltrd 2701 . . . 4  |-  ( ( ( X  e.  V  /\  y  e.  A
)  /\  Z  =  <. X ,  y >.
)  ->  Z  e.  ( { X }  X.  A ) )
3231adantllr 755 . . 3  |-  ( ( ( ( X  e.  V  /\  E. y  e.  A  Z  =  <. X ,  y >.
)  /\  y  e.  A )  /\  Z  =  <. X ,  y
>. )  ->  Z  e.  ( { X }  X.  A ) )
33 simpr 477 . . 3  |-  ( ( X  e.  V  /\  E. y  e.  A  Z  =  <. X ,  y
>. )  ->  E. y  e.  A  Z  =  <. X ,  y >.
)
3422, 32, 33r19.29af 3076 . 2  |-  ( ( X  e.  V  /\  E. y  e.  A  Z  =  <. X ,  y
>. )  ->  Z  e.  ( { X }  X.  A ) )
3519, 34impbida 877 1  |-  ( X  e.  V  ->  ( Z  e.  ( { X }  X.  A
)  <->  E. y  e.  A  Z  =  <. X , 
y >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   {csn 4177   <.cop 4183    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator