| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsnxpOLD | Structured version Visualization version Unicode version | ||
| Description: Obsolete proof of elsnxp 5677 as of 14-Jul-2021. (Contributed by Thierry Arnoux, 10-Apr-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| elsnxpOLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 5131 |
. . . 4
| |
| 2 | df-rex 2918 |
. . . . . . . 8
| |
| 3 | an13 840 |
. . . . . . . . 9
| |
| 4 | 3 | exbii 1774 |
. . . . . . . 8
|
| 5 | 2, 4 | bitr4i 267 |
. . . . . . 7
|
| 6 | velsn 4193 |
. . . . . . . . . 10
| |
| 7 | 6 | anbi1i 731 |
. . . . . . . . 9
|
| 8 | simpr 477 |
. . . . . . . . . 10
| |
| 9 | opeq1 4402 |
. . . . . . . . . . 11
| |
| 10 | 9 | adantr 481 |
. . . . . . . . . 10
|
| 11 | 8, 10 | eqtrd 2656 |
. . . . . . . . 9
|
| 12 | 7, 11 | sylbi 207 |
. . . . . . . 8
|
| 13 | 12 | reximi 3011 |
. . . . . . 7
|
| 14 | 5, 13 | sylbir 225 |
. . . . . 6
|
| 15 | 14 | eximi 1762 |
. . . . 5
|
| 16 | 19.9v 1896 |
. . . . 5
| |
| 17 | 15, 16 | sylib 208 |
. . . 4
|
| 18 | 1, 17 | sylbi 207 |
. . 3
|
| 19 | 18 | adantl 482 |
. 2
|
| 20 | nfv 1843 |
. . . 4
| |
| 21 | nfre1 3005 |
. . . 4
| |
| 22 | 20, 21 | nfan 1828 |
. . 3
|
| 23 | simpr 477 |
. . . . 5
| |
| 24 | snidg 4206 |
. . . . . . . 8
| |
| 25 | 24 | adantr 481 |
. . . . . . 7
|
| 26 | simpr 477 |
. . . . . . 7
| |
| 27 | opelxp 5146 |
. . . . . . . 8
| |
| 28 | 27 | biimpri 218 |
. . . . . . 7
|
| 29 | 25, 26, 28 | syl2anc 693 |
. . . . . 6
|
| 30 | 29 | adantr 481 |
. . . . 5
|
| 31 | 23, 30 | eqeltrd 2701 |
. . . 4
|
| 32 | 31 | adantllr 755 |
. . 3
|
| 33 | simpr 477 |
. . 3
| |
| 34 | 22, 32, 33 | r19.29af 3076 |
. 2
|
| 35 | 19, 34 | impbida 877 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |