| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsnxp | Structured version Visualization version Unicode version | ||
| Description: Elementhood to a cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020.) (Proof shortened by JJ, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| elsnxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 5131 |
. . 3
| |
| 2 | df-rex 2918 |
. . . . . 6
| |
| 3 | an13 840 |
. . . . . . 7
| |
| 4 | 3 | exbii 1774 |
. . . . . 6
|
| 5 | 2, 4 | bitr4i 267 |
. . . . 5
|
| 6 | elsni 4194 |
. . . . . . . . 9
| |
| 7 | 6 | opeq1d 4408 |
. . . . . . . 8
|
| 8 | 7 | eqeq2d 2632 |
. . . . . . 7
|
| 9 | 8 | biimpa 501 |
. . . . . 6
|
| 10 | 9 | reximi 3011 |
. . . . 5
|
| 11 | 5, 10 | sylbir 225 |
. . . 4
|
| 12 | 11 | exlimiv 1858 |
. . 3
|
| 13 | 1, 12 | sylbi 207 |
. 2
|
| 14 | snidg 4206 |
. . . . 5
| |
| 15 | opelxpi 5148 |
. . . . 5
| |
| 16 | 14, 15 | sylan 488 |
. . . 4
|
| 17 | eleq1 2689 |
. . . 4
| |
| 18 | 16, 17 | syl5ibrcom 237 |
. . 3
|
| 19 | 18 | rexlimdva 3031 |
. 2
|
| 20 | 13, 19 | impbid2 216 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 |
| This theorem is referenced by: esum2dlem 30154 esum2d 30155 projf1o 39386 sge0xp 40646 |
| Copyright terms: Public domain | W3C validator |