| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enp1ilem | Structured version Visualization version Unicode version | ||
| Description: Lemma for uses of enp1i 8195. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| enp1ilem.1 |
|
| Ref | Expression |
|---|---|
| enp1ilem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 3760 |
. . 3
| |
| 2 | undif1 4043 |
. . 3
| |
| 3 | uncom 3757 |
. . . 4
| |
| 4 | enp1ilem.1 |
. . . 4
| |
| 5 | 3, 4 | eqtr4i 2647 |
. . 3
|
| 6 | 1, 2, 5 | 3eqtr3g 2679 |
. 2
|
| 7 | snssi 4339 |
. . . 4
| |
| 8 | ssequn2 3786 |
. . . 4
| |
| 9 | 7, 8 | sylib 208 |
. . 3
|
| 10 | 9 | eqeq1d 2624 |
. 2
|
| 11 | 6, 10 | syl5ib 234 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: en2 8196 en3 8197 en4 8198 |
| Copyright terms: Public domain | W3C validator |