MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1en Structured version   Visualization version   Unicode version

Theorem dif1en 8193
Description: If a set  A is equinumerous to the successor of a natural number  M, then  A with an element removed is equinumerous to  M. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.)
Assertion
Ref Expression
dif1en  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)

Proof of Theorem dif1en
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 peano2 7086 . . . . 5  |-  ( M  e.  om  ->  suc  M  e.  om )
2 breq2 4657 . . . . . . 7  |-  ( x  =  suc  M  -> 
( A  ~~  x  <->  A 
~~  suc  M )
)
32rspcev 3309 . . . . . 6  |-  ( ( suc  M  e.  om  /\  A  ~~  suc  M
)  ->  E. x  e.  om  A  ~~  x
)
4 isfi 7979 . . . . . 6  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
53, 4sylibr 224 . . . . 5  |-  ( ( suc  M  e.  om  /\  A  ~~  suc  M
)  ->  A  e.  Fin )
61, 5sylan 488 . . . 4  |-  ( ( M  e.  om  /\  A  ~~  suc  M )  ->  A  e.  Fin )
7 diffi 8192 . . . . 5  |-  ( A  e.  Fin  ->  ( A  \  { X }
)  e.  Fin )
8 isfi 7979 . . . . 5  |-  ( ( A  \  { X } )  e.  Fin  <->  E. x  e.  om  ( A  \  { X }
)  ~~  x )
97, 8sylib 208 . . . 4  |-  ( A  e.  Fin  ->  E. x  e.  om  ( A  \  { X } )  ~~  x )
106, 9syl 17 . . 3  |-  ( ( M  e.  om  /\  A  ~~  suc  M )  ->  E. x  e.  om  ( A  \  { X } )  ~~  x
)
11103adant3 1081 . 2  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  E. x  e.  om  ( A  \  { X } )  ~~  x
)
12 vex 3203 . . . . . . . 8  |-  x  e. 
_V
13 en2sn 8037 . . . . . . . 8  |-  ( ( X  e.  A  /\  x  e.  _V )  ->  { X }  ~~  { x } )
1412, 13mpan2 707 . . . . . . 7  |-  ( X  e.  A  ->  { X }  ~~  { x }
)
15 nnord 7073 . . . . . . . 8  |-  ( x  e.  om  ->  Ord  x )
16 orddisj 5762 . . . . . . . 8  |-  ( Ord  x  ->  ( x  i^i  { x } )  =  (/) )
1715, 16syl 17 . . . . . . 7  |-  ( x  e.  om  ->  (
x  i^i  { x } )  =  (/) )
18 incom 3805 . . . . . . . . . 10  |-  ( ( A  \  { X } )  i^i  { X } )  =  ( { X }  i^i  ( A  \  { X } ) )
19 disjdif 4040 . . . . . . . . . 10  |-  ( { X }  i^i  ( A  \  { X }
) )  =  (/)
2018, 19eqtri 2644 . . . . . . . . 9  |-  ( ( A  \  { X } )  i^i  { X } )  =  (/)
21 unen 8040 . . . . . . . . . 10  |-  ( ( ( ( A  \  { X } )  ~~  x  /\  { X }  ~~  { x } )  /\  ( ( ( A  \  { X } )  i^i  { X } )  =  (/)  /\  ( x  i^i  {
x } )  =  (/) ) )  ->  (
( A  \  { X } )  u.  { X } )  ~~  (
x  u.  { x } ) )
2221an4s 869 . . . . . . . . 9  |-  ( ( ( ( A  \  { X } )  ~~  x  /\  ( ( A 
\  { X }
)  i^i  { X } )  =  (/) )  /\  ( { X }  ~~  { x }  /\  ( x  i^i  {
x } )  =  (/) ) )  ->  (
( A  \  { X } )  u.  { X } )  ~~  (
x  u.  { x } ) )
2320, 22mpanl2 717 . . . . . . . 8  |-  ( ( ( A  \  { X } )  ~~  x  /\  ( { X }  ~~  { x }  /\  ( x  i^i  { x } )  =  (/) ) )  ->  (
( A  \  { X } )  u.  { X } )  ~~  (
x  u.  { x } ) )
2423expcom 451 . . . . . . 7  |-  ( ( { X }  ~~  { x }  /\  (
x  i^i  { x } )  =  (/) )  ->  ( ( A 
\  { X }
)  ~~  x  ->  ( ( A  \  { X } )  u.  { X } )  ~~  (
x  u.  { x } ) ) )
2514, 17, 24syl2an 494 . . . . . 6  |-  ( ( X  e.  A  /\  x  e.  om )  ->  ( ( A  \  { X } )  ~~  x  ->  ( ( A 
\  { X }
)  u.  { X } )  ~~  (
x  u.  { x } ) ) )
26253ad2antl3 1225 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  x  e.  om )  ->  ( ( A  \  { X }
)  ~~  x  ->  ( ( A  \  { X } )  u.  { X } )  ~~  (
x  u.  { x } ) ) )
27 difsnid 4341 . . . . . . . . 9  |-  ( X  e.  A  ->  (
( A  \  { X } )  u.  { X } )  =  A )
28 df-suc 5729 . . . . . . . . . . 11  |-  suc  x  =  ( x  u. 
{ x } )
2928eqcomi 2631 . . . . . . . . . 10  |-  ( x  u.  { x }
)  =  suc  x
3029a1i 11 . . . . . . . . 9  |-  ( X  e.  A  ->  (
x  u.  { x } )  =  suc  x )
3127, 30breq12d 4666 . . . . . . . 8  |-  ( X  e.  A  ->  (
( ( A  \  { X } )  u. 
{ X } ) 
~~  ( x  u. 
{ x } )  <-> 
A  ~~  suc  x ) )
32313ad2ant3 1084 . . . . . . 7  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( ( ( A 
\  { X }
)  u.  { X } )  ~~  (
x  u.  { x } )  <->  A  ~~  suc  x ) )
3332adantr 481 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  x  e.  om )  ->  ( (
( A  \  { X } )  u.  { X } )  ~~  (
x  u.  { x } )  <->  A  ~~  suc  x ) )
34 ensym 8005 . . . . . . . . . . 11  |-  ( A 
~~  suc  M  ->  suc 
M  ~~  A )
35 entr 8008 . . . . . . . . . . . . 13  |-  ( ( suc  M  ~~  A  /\  A  ~~  suc  x
)  ->  suc  M  ~~  suc  x )
36 peano2 7086 . . . . . . . . . . . . . 14  |-  ( x  e.  om  ->  suc  x  e.  om )
37 nneneq 8143 . . . . . . . . . . . . . 14  |-  ( ( suc  M  e.  om  /\ 
suc  x  e.  om )  ->  ( suc  M  ~~  suc  x  <->  suc  M  =  suc  x ) )
3836, 37sylan2 491 . . . . . . . . . . . . 13  |-  ( ( suc  M  e.  om  /\  x  e.  om )  ->  ( suc  M  ~~  suc  x  <->  suc  M  =  suc  x ) )
3935, 38syl5ib 234 . . . . . . . . . . . 12  |-  ( ( suc  M  e.  om  /\  x  e.  om )  ->  ( ( suc  M  ~~  A  /\  A  ~~  suc  x )  ->  suc  M  =  suc  x ) )
4039expd 452 . . . . . . . . . . 11  |-  ( ( suc  M  e.  om  /\  x  e.  om )  ->  ( suc  M  ~~  A  ->  ( A  ~~  suc  x  ->  suc  M  =  suc  x ) ) )
4134, 40syl5 34 . . . . . . . . . 10  |-  ( ( suc  M  e.  om  /\  x  e.  om )  ->  ( A  ~~  suc  M  ->  ( A  ~~  suc  x  ->  suc  M  =  suc  x ) ) )
421, 41sylan 488 . . . . . . . . 9  |-  ( ( M  e.  om  /\  x  e.  om )  ->  ( A  ~~  suc  M  ->  ( A  ~~  suc  x  ->  suc  M  =  suc  x ) ) )
4342imp 445 . . . . . . . 8  |-  ( ( ( M  e.  om  /\  x  e.  om )  /\  A  ~~  suc  M
)  ->  ( A  ~~  suc  x  ->  suc  M  =  suc  x ) )
4443an32s 846 . . . . . . 7  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M
)  /\  x  e.  om )  ->  ( A  ~~  suc  x  ->  suc  M  =  suc  x ) )
45443adantl3 1219 . . . . . 6  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  x  e.  om )  ->  ( A  ~~  suc  x  ->  suc  M  =  suc  x ) )
4633, 45sylbid 230 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  x  e.  om )  ->  ( (
( A  \  { X } )  u.  { X } )  ~~  (
x  u.  { x } )  ->  suc  M  =  suc  x ) )
47 peano4 7088 . . . . . . 7  |-  ( ( M  e.  om  /\  x  e.  om )  ->  ( suc  M  =  suc  x  <->  M  =  x ) )
4847biimpd 219 . . . . . 6  |-  ( ( M  e.  om  /\  x  e.  om )  ->  ( suc  M  =  suc  x  ->  M  =  x ) )
49483ad2antl1 1223 . . . . 5  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  x  e.  om )  ->  ( suc  M  =  suc  x  ->  M  =  x )
)
5026, 46, 493syld 60 . . . 4  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  x  e.  om )  ->  ( ( A  \  { X }
)  ~~  x  ->  M  =  x ) )
51 breq2 4657 . . . . 5  |-  ( M  =  x  ->  (
( A  \  { X } )  ~~  M  <->  ( A  \  { X } )  ~~  x
) )
5251biimprcd 240 . . . 4  |-  ( ( A  \  { X } )  ~~  x  ->  ( M  =  x  ->  ( A  \  { X } )  ~~  M ) )
5350, 52sylcom 30 . . 3  |-  ( ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A
)  /\  x  e.  om )  ->  ( ( A  \  { X }
)  ~~  x  ->  ( A  \  { X } )  ~~  M
) )
5453rexlimdva 3031 . 2  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( E. x  e. 
om  ( A  \  { X } )  ~~  x  ->  ( A  \  { X } )  ~~  M ) )
5511, 54mpd 15 1  |-  ( ( M  e.  om  /\  A  ~~  suc  M  /\  X  e.  A )  ->  ( A  \  { X } )  ~~  M
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653   Ord word 5722   suc csuc 5725   omcom 7065    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  enp1i  8195  findcard  8199  findcard2  8200  en2eleq  8831  en2other2  8832  mreexexlem4d  16307  f1otrspeq  17867  pmtrf  17875  pmtrmvd  17876  pmtrfinv  17881
  Copyright terms: Public domain W3C validator