| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleqtrd | Structured version Visualization version Unicode version | ||
| Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| neleqtrd.1 |
|
| neleqtrd.2 |
|
| Ref | Expression |
|---|---|
| neleqtrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrd.1 |
. 2
| |
| 2 | neleqtrd.2 |
. . 3
| |
| 3 | 2 | eleq2d 2687 |
. 2
|
| 4 | 1, 3 | mtbid 314 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 |
| This theorem is referenced by: neleqtrrd 2723 smoord 7462 r1tskina 9604 ofccat 13708 mreexexlem2d 16305 opptgdim2 25637 dochnel 36682 stoweidlem26 40243 fourierdlem60 40383 fourierdlem61 40384 sge00 40593 sge0sn 40596 sge0split 40626 iundjiunlem 40676 |
| Copyright terms: Public domain | W3C validator |