MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsnOLD Structured version   Visualization version   Unicode version

Theorem eqsnOLD 4362
Description: Obsolete proof of eqsn 4361 as of 23-Jul-2021. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
eqsnOLD  |-  ( A  =/=  (/)  ->  ( A  =  { B }  <->  A. x  e.  A  x  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem eqsnOLD
StepHypRef Expression
1 eqimss 3657 . . 3  |-  ( A  =  { B }  ->  A  C_  { B } )
2 df-ne 2795 . . . . 5  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
3 sssn 4358 . . . . . . 7  |-  ( A 
C_  { B }  <->  ( A  =  (/)  \/  A  =  { B } ) )
43biimpi 206 . . . . . 6  |-  ( A 
C_  { B }  ->  ( A  =  (/)  \/  A  =  { B } ) )
54ord 392 . . . . 5  |-  ( A 
C_  { B }  ->  ( -.  A  =  (/)  ->  A  =  { B } ) )
62, 5syl5bi 232 . . . 4  |-  ( A 
C_  { B }  ->  ( A  =/=  (/)  ->  A  =  { B } ) )
76com12 32 . . 3  |-  ( A  =/=  (/)  ->  ( A  C_ 
{ B }  ->  A  =  { B }
) )
81, 7impbid2 216 . 2  |-  ( A  =/=  (/)  ->  ( A  =  { B }  <->  A  C_  { B } ) )
9 dfss3 3592 . . 3  |-  ( A 
C_  { B }  <->  A. x  e.  A  x  e.  { B }
)
10 velsn 4193 . . . 4  |-  ( x  e.  { B }  <->  x  =  B )
1110ralbii 2980 . . 3  |-  ( A. x  e.  A  x  e.  { B }  <->  A. x  e.  A  x  =  B )
129, 11bitri 264 . 2  |-  ( A 
C_  { B }  <->  A. x  e.  A  x  =  B )
138, 12syl6bb 276 1  |-  ( A  =/=  (/)  ->  ( A  =  { B }  <->  A. x  e.  A  x  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator