MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issn Structured version   Visualization version   Unicode version

Theorem issn 4363
Description: A sufficient condition for a (nonempty) set to be a singleton. (Contributed by AV, 20-Sep-2020.)
Assertion
Ref Expression
issn  |-  ( E. x  e.  A  A. y  e.  A  x  =  y  ->  E. z  A  =  { z } )
Distinct variable group:    x, A, y, z

Proof of Theorem issn
StepHypRef Expression
1 equcom 1945 . . . . . 6  |-  ( x  =  y  <->  y  =  x )
21a1i 11 . . . . 5  |-  ( x  e.  A  ->  (
x  =  y  <->  y  =  x ) )
32ralbidv 2986 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  x  =  y  <->  A. y  e.  A  y  =  x ) )
4 ne0i 3921 . . . . 5  |-  ( x  e.  A  ->  A  =/=  (/) )
5 eqsn 4361 . . . . 5  |-  ( A  =/=  (/)  ->  ( A  =  { x }  <->  A. y  e.  A  y  =  x ) )
64, 5syl 17 . . . 4  |-  ( x  e.  A  ->  ( A  =  { x } 
<-> 
A. y  e.  A  y  =  x )
)
73, 6bitr4d 271 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  x  =  y  <->  A  =  { x } ) )
8 sneq 4187 . . . . 5  |-  ( z  =  x  ->  { z }  =  { x } )
98eqeq2d 2632 . . . 4  |-  ( z  =  x  ->  ( A  =  { z } 
<->  A  =  { x } ) )
109spcegv 3294 . . 3  |-  ( x  e.  A  ->  ( A  =  { x }  ->  E. z  A  =  { z } ) )
117, 10sylbid 230 . 2  |-  ( x  e.  A  ->  ( A. y  e.  A  x  =  y  ->  E. z  A  =  {
z } ) )
1211rexlimiv 3027 1  |-  ( E. x  e.  A  A. y  e.  A  x  =  y  ->  E. z  A  =  { z } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178
This theorem is referenced by:  n0snor2el  4364
  Copyright terms: Public domain W3C validator