MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs45f Structured version   Visualization version   Unicode version

Theorem equs45f 2350
Description: Two ways of expressing substitution when  y is not free in  ph. The implication "to the left" is equs4 2290 and does not require the non-freeness hypothesis. Theorem sb56 2150 replaces the non-freeness hypothesis with a dv condition and equs5 2351 replaces it with a distinctor as antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
equs45f.1  |-  F/ y
ph
Assertion
Ref Expression
equs45f  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )

Proof of Theorem equs45f
StepHypRef Expression
1 equs45f.1 . . . . . 6  |-  F/ y
ph
21nf5ri 2065 . . . . 5  |-  ( ph  ->  A. y ph )
32anim2i 593 . . . 4  |-  ( ( x  =  y  /\  ph )  ->  ( x  =  y  /\  A. y ph ) )
43eximi 1762 . . 3  |-  ( E. x ( x  =  y  /\  ph )  ->  E. x ( x  =  y  /\  A. y ph ) )
5 equs5a 2348 . . 3  |-  ( E. x ( x  =  y  /\  A. y ph )  ->  A. x
( x  =  y  ->  ph ) )
64, 5syl 17 . 2  |-  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
)
7 equs4 2290 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph )
)
86, 7impbii 199 1  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  sb5f  2386
  Copyright terms: Public domain W3C validator