MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equvel Structured version   Visualization version   Unicode version

Theorem equvel 2347
Description: A variable elimination law for equality with no distinct variable requirements. Compare equvini 2346. (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 15-Jun-2019.)
Assertion
Ref Expression
equvel  |-  ( A. z ( z  =  x  <->  z  =  y )  ->  x  =  y )

Proof of Theorem equvel
StepHypRef Expression
1 albi 1746 . 2  |-  ( A. z ( z  =  x  <->  z  =  y )  ->  ( A. z  z  =  x  <->  A. z  z  =  y ) )
2 ax6e 2250 . . . 4  |-  E. z 
z  =  y
3 biimpr 210 . . . . . 6  |-  ( ( z  =  x  <->  z  =  y )  ->  (
z  =  y  -> 
z  =  x ) )
4 ax7 1943 . . . . . 6  |-  ( z  =  x  ->  (
z  =  y  ->  x  =  y )
)
53, 4syli 39 . . . . 5  |-  ( ( z  =  x  <->  z  =  y )  ->  (
z  =  y  ->  x  =  y )
)
65com12 32 . . . 4  |-  ( z  =  y  ->  (
( z  =  x  <-> 
z  =  y )  ->  x  =  y ) )
72, 6eximii 1764 . . 3  |-  E. z
( ( z  =  x  <->  z  =  y )  ->  x  =  y )
8719.35i 1806 . 2  |-  ( A. z ( z  =  x  <->  z  =  y )  ->  E. z  x  =  y )
94spsd 2057 . . . . 5  |-  ( z  =  x  ->  ( A. z  z  =  y  ->  x  =  y ) )
109sps 2055 . . . 4  |-  ( A. z  z  =  x  ->  ( A. z  z  =  y  ->  x  =  y ) )
1110a1dd 50 . . 3  |-  ( A. z  z  =  x  ->  ( A. z  z  =  y  ->  ( E. z  x  =  y  ->  x  =  y ) ) )
12 nfeqf 2301 . . . . 5  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z  x  =  y )
131219.9d 2070 . . . 4  |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  ( E. z  x  =  y  ->  x  =  y ) )
1413ex 450 . . 3  |-  ( -. 
A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( E. z  x  =  y  ->  x  =  y ) ) )
1511, 14bija 370 . 2  |-  ( ( A. z  z  =  x  <->  A. z  z  =  y )  ->  ( E. z  x  =  y  ->  x  =  y ) )
161, 8, 15sylc 65 1  |-  ( A. z ( z  =  x  <->  z  =  y )  ->  x  =  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator