| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equvel | Structured version Visualization version Unicode version | ||
| Description: A variable elimination law for equality with no distinct variable requirements. Compare equvini 2346. (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) |
| Ref | Expression |
|---|---|
| equvel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1746 |
. 2
| |
| 2 | ax6e 2250 |
. . . 4
| |
| 3 | biimpr 210 |
. . . . . 6
| |
| 4 | ax7 1943 |
. . . . . 6
| |
| 5 | 3, 4 | syli 39 |
. . . . 5
|
| 6 | 5 | com12 32 |
. . . 4
|
| 7 | 2, 6 | eximii 1764 |
. . 3
|
| 8 | 7 | 19.35i 1806 |
. 2
|
| 9 | 4 | spsd 2057 |
. . . . 5
|
| 10 | 9 | sps 2055 |
. . . 4
|
| 11 | 10 | a1dd 50 |
. . 3
|
| 12 | nfeqf 2301 |
. . . . 5
| |
| 13 | 12 | 19.9d 2070 |
. . . 4
|
| 14 | 13 | ex 450 |
. . 3
|
| 15 | 11, 14 | bija 370 |
. 2
|
| 16 | 1, 8, 15 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |