MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrreslem2 Structured version   Visualization version   Unicode version

Theorem estrreslem2 16778
Description: Lemma 2 for estrres 16779. (Contributed by AV, 14-Mar-2020.)
Hypotheses
Ref Expression
estrres.c  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
estrres.b  |-  ( ph  ->  B  e.  V )
estrres.h  |-  ( ph  ->  H  e.  X )
estrres.x  |-  ( ph  ->  .x.  e.  Y )
Assertion
Ref Expression
estrreslem2  |-  ( ph  ->  ( Base `  ndx )  e.  dom  C )

Proof of Theorem estrreslem2
StepHypRef Expression
1 eqidd 2623 . . . 4  |-  ( ph  ->  ( Base `  ndx )  =  ( Base ` 
ndx ) )
213mix1d 1236 . . 3  |-  ( ph  ->  ( ( Base `  ndx )  =  ( Base ` 
ndx )  \/  ( Base `  ndx )  =  ( Hom  `  ndx )  \/  ( Base ` 
ndx )  =  (comp `  ndx ) ) )
3 fvex 6201 . . . 4  |-  ( Base `  ndx )  e.  _V
4 eltpg 4227 . . . 4  |-  ( (
Base `  ndx )  e. 
_V  ->  ( ( Base `  ndx )  e.  {
( Base `  ndx ) ,  ( Hom  `  ndx ) ,  (comp `  ndx ) }  <->  ( ( Base `  ndx )  =  (
Base `  ndx )  \/  ( Base `  ndx )  =  ( Hom  ` 
ndx )  \/  ( Base `  ndx )  =  (comp `  ndx ) ) ) )
53, 4mp1i 13 . . 3  |-  ( ph  ->  ( ( Base `  ndx )  e.  { ( Base `  ndx ) ,  ( Hom  `  ndx ) ,  (comp `  ndx ) }  <->  ( ( Base `  ndx )  =  (
Base `  ndx )  \/  ( Base `  ndx )  =  ( Hom  ` 
ndx )  \/  ( Base `  ndx )  =  (comp `  ndx ) ) ) )
62, 5mpbird 247 . 2  |-  ( ph  ->  ( Base `  ndx )  e.  { ( Base `  ndx ) ,  ( Hom  `  ndx ) ,  (comp `  ndx ) } )
7 df-tp 4182 . . . . . 6  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. }  u.  { <. (comp ` 
ndx ) ,  .x.  >. } )
87a1i 11 . . . . 5  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. }  =  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. }  u.  { <. (comp ` 
ndx ) ,  .x.  >. } ) )
98dmeqd 5326 . . . 4  |-  ( ph  ->  dom  { <. ( Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  =  dom  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. }  u.  { <. (comp ` 
ndx ) ,  .x.  >. } ) )
10 dmun 5331 . . . . 5  |-  dom  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. }  u.  { <. (comp ` 
ndx ) ,  .x.  >. } )  =  ( dom  { <. ( Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. }  u.  dom  {
<. (comp `  ndx ) , 
.x.  >. } )
1110a1i 11 . . . 4  |-  ( ph  ->  dom  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. }  u.  { <. (comp `  ndx ) , 
.x.  >. } )  =  ( dom  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. }  u.  dom  {
<. (comp `  ndx ) , 
.x.  >. } ) )
12 estrres.b . . . . . 6  |-  ( ph  ->  B  e.  V )
13 estrres.h . . . . . 6  |-  ( ph  ->  H  e.  X )
14 dmpropg 5608 . . . . . 6  |-  ( ( B  e.  V  /\  H  e.  X )  ->  dom  { <. ( Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. }  =  {
( Base `  ndx ) ,  ( Hom  `  ndx ) } )
1512, 13, 14syl2anc 693 . . . . 5  |-  ( ph  ->  dom  { <. ( Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. }  =  {
( Base `  ndx ) ,  ( Hom  `  ndx ) } )
16 estrres.x . . . . . 6  |-  ( ph  ->  .x.  e.  Y )
17 dmsnopg 5606 . . . . . 6  |-  (  .x.  e.  Y  ->  dom  { <. (comp `  ndx ) , 
.x.  >. }  =  {
(comp `  ndx ) } )
1816, 17syl 17 . . . . 5  |-  ( ph  ->  dom  { <. (comp ` 
ndx ) ,  .x.  >. }  =  { (comp ` 
ndx ) } )
1915, 18uneq12d 3768 . . . 4  |-  ( ph  ->  ( dom  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. }  u.  dom  {
<. (comp `  ndx ) , 
.x.  >. } )  =  ( { ( Base `  ndx ) ,  ( Hom  `  ndx ) }  u.  { (comp `  ndx ) } ) )
209, 11, 193eqtrd 2660 . . 3  |-  ( ph  ->  dom  { <. ( Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  =  ( {
( Base `  ndx ) ,  ( Hom  `  ndx ) }  u.  { (comp `  ndx ) } ) )
21 estrres.c . . . 4  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
2221dmeqd 5326 . . 3  |-  ( ph  ->  dom  C  =  dom  {
<. ( Base `  ndx ) ,  B >. , 
<. ( Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
23 df-tp 4182 . . . 4  |-  { (
Base `  ndx ) ,  ( Hom  `  ndx ) ,  (comp `  ndx ) }  =  ( { ( Base `  ndx ) ,  ( Hom  ` 
ndx ) }  u.  { (comp `  ndx ) } )
2423a1i 11 . . 3  |-  ( ph  ->  { ( Base `  ndx ) ,  ( Hom  ` 
ndx ) ,  (comp `  ndx ) }  =  ( { ( Base `  ndx ) ,  ( Hom  ` 
ndx ) }  u.  { (comp `  ndx ) } ) )
2520, 22, 243eqtr4d 2666 . 2  |-  ( ph  ->  dom  C  =  {
( Base `  ndx ) ,  ( Hom  `  ndx ) ,  (comp `  ndx ) } )
266, 25eleqtrrd 2704 1  |-  ( ph  ->  ( Base `  ndx )  e.  dom  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ w3o 1036    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572   {csn 4177   {cpr 4179   {ctp 4181   <.cop 4183   dom cdm 5114   ` cfv 5888   ndxcnx 15854   Basecbs 15857   Hom chom 15952  compcco 15953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896
This theorem is referenced by:  estrres  16779
  Copyright terms: Public domain W3C validator