| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eu2ndop1stv | Structured version Visualization version Unicode version | ||
| Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.) |
| Ref | Expression |
|---|---|
| eu2ndop1stv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2494 |
. 2
| |
| 2 | nfeu1 2480 |
. . . 4
| |
| 3 | nfcv 2764 |
. . . . 5
| |
| 4 | 3 | nfel1 2779 |
. . . 4
|
| 5 | 2, 4 | nfim 1825 |
. . 3
|
| 6 | opprc1 4425 |
. . . . . . . . 9
| |
| 7 | 6 | eleq1d 2686 |
. . . . . . . 8
|
| 8 | ax-5 1839 |
. . . . . . . . 9
| |
| 9 | alneu 41201 |
. . . . . . . . 9
| |
| 10 | 8, 9 | syl 17 |
. . . . . . . 8
|
| 11 | 7, 10 | syl6bi 243 |
. . . . . . 7
|
| 12 | 11 | impcom 446 |
. . . . . 6
|
| 13 | 7 | eubidv 2490 |
. . . . . . . 8
|
| 14 | 13 | notbid 308 |
. . . . . . 7
|
| 15 | 14 | adantl 482 |
. . . . . 6
|
| 16 | 12, 15 | mpbird 247 |
. . . . 5
|
| 17 | 16 | ex 450 |
. . . 4
|
| 18 | 17 | con4d 114 |
. . 3
|
| 19 | 5, 18 | exlimi 2086 |
. 2
|
| 20 | 1, 19 | mpcom 38 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-op 4184 |
| This theorem is referenced by: afveu 41233 tz6.12-afv 41253 |
| Copyright terms: Public domain | W3C validator |