MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem2 Structured version   Visualization version   Unicode version

Theorem eupth2lem2 27079
Description: Lemma for eupth2 27099. (Contributed by Mario Carneiro, 8-Apr-2015.)
Hypothesis
Ref Expression
eupth2lem2.1  |-  B  e. 
_V
Assertion
Ref Expression
eupth2lem2  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( -.  U  e.  if ( A  =  B ,  (/) ,  { A ,  B }
)  <->  U  e.  if ( A  =  C ,  (/) ,  { A ,  C } ) ) )

Proof of Theorem eupth2lem2
StepHypRef Expression
1 eqidd 2623 . . . . . . 7  |-  ( ( B  =/=  C  /\  B  =  U )  ->  B  =  B )
21olcd 408 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  \/  B  =  B ) )
32biantrud 528 . . . . 5  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =/=  B  <->  ( A  =/=  B  /\  ( B  =  A  \/  B  =  B
) ) ) )
4 eupth2lem2.1 . . . . . 6  |-  B  e. 
_V
5 eupth2lem1 27078 . . . . . 6  |-  ( B  e.  _V  ->  ( B  e.  if ( A  =  B ,  (/)
,  { A ,  B } )  <->  ( A  =/=  B  /\  ( B  =  A  \/  B  =  B ) ) ) )
64, 5ax-mp 5 . . . . 5  |-  ( B  e.  if ( A  =  B ,  (/) ,  { A ,  B } )  <->  ( A  =/=  B  /\  ( B  =  A  \/  B  =  B ) ) )
73, 6syl6bbr 278 . . . 4  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =/=  B  <->  B  e.  if ( A  =  B ,  (/) ,  { A ,  B } ) ) )
8 simpr 477 . . . . 5  |-  ( ( B  =/=  C  /\  B  =  U )  ->  B  =  U )
98eleq1d 2686 . . . 4  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  e.  if ( A  =  B ,  (/) ,  { A ,  B } )  <->  U  e.  if ( A  =  B ,  (/) ,  { A ,  B } ) ) )
107, 9bitrd 268 . . 3  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =/=  B  <->  U  e.  if ( A  =  B ,  (/) ,  { A ,  B } ) ) )
1110necon1bbid 2833 . 2  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( -.  U  e.  if ( A  =  B ,  (/) ,  { A ,  B }
)  <->  A  =  B
) )
12 simpl 473 . . . . . . 7  |-  ( ( B  =/=  C  /\  B  =  U )  ->  B  =/=  C )
13 neeq1 2856 . . . . . . 7  |-  ( B  =  A  ->  ( B  =/=  C  <->  A  =/=  C ) )
1412, 13syl5ibcom 235 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  ->  A  =/=  C
) )
1514pm4.71rd 667 . . . . 5  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  <-> 
( A  =/=  C  /\  B  =  A
) ) )
16 eqcom 2629 . . . . 5  |-  ( A  =  B  <->  B  =  A )
17 ancom 466 . . . . 5  |-  ( ( B  =  A  /\  A  =/=  C )  <->  ( A  =/=  C  /\  B  =  A ) )
1815, 16, 173bitr4g 303 . . . 4  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =  B  <-> 
( B  =  A  /\  A  =/=  C
) ) )
1912neneqd 2799 . . . . . . 7  |-  ( ( B  =/=  C  /\  B  =  U )  ->  -.  B  =  C )
20 biorf 420 . . . . . . 7  |-  ( -.  B  =  C  -> 
( B  =  A  <-> 
( B  =  C  \/  B  =  A ) ) )
2119, 20syl 17 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  <-> 
( B  =  C  \/  B  =  A ) ) )
22 orcom 402 . . . . . 6  |-  ( ( B  =  C  \/  B  =  A )  <->  ( B  =  A  \/  B  =  C )
)
2321, 22syl6bb 276 . . . . 5  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  =  A  <-> 
( B  =  A  \/  B  =  C ) ) )
2423anbi1d 741 . . . 4  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( ( B  =  A  /\  A  =/= 
C )  <->  ( ( B  =  A  \/  B  =  C )  /\  A  =/=  C
) ) )
2518, 24bitrd 268 . . 3  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =  B  <-> 
( ( B  =  A  \/  B  =  C )  /\  A  =/=  C ) ) )
26 ancom 466 . . 3  |-  ( ( A  =/=  C  /\  ( B  =  A  \/  B  =  C
) )  <->  ( ( B  =  A  \/  B  =  C )  /\  A  =/=  C
) )
2725, 26syl6bbr 278 . 2  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( A  =  B  <-> 
( A  =/=  C  /\  ( B  =  A  \/  B  =  C ) ) ) )
28 eupth2lem1 27078 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  if ( A  =  C ,  (/)
,  { A ,  C } )  <->  ( A  =/=  C  /\  ( B  =  A  \/  B  =  C ) ) ) )
294, 28ax-mp 5 . . 3  |-  ( B  e.  if ( A  =  C ,  (/) ,  { A ,  C } )  <->  ( A  =/=  C  /\  ( B  =  A  \/  B  =  C ) ) )
308eleq1d 2686 . . 3  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( B  e.  if ( A  =  C ,  (/) ,  { A ,  C } )  <->  U  e.  if ( A  =  C ,  (/) ,  { A ,  C } ) ) )
3129, 30syl5bbr 274 . 2  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( ( A  =/= 
C  /\  ( B  =  A  \/  B  =  C ) )  <->  U  e.  if ( A  =  C ,  (/) ,  { A ,  C } ) ) )
3211, 27, 313bitrd 294 1  |-  ( ( B  =/=  C  /\  B  =  U )  ->  ( -.  U  e.  if ( A  =  B ,  (/) ,  { A ,  B }
)  <->  U  e.  if ( A  =  C ,  (/) ,  { A ,  C } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   ifcif 4086   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180
This theorem is referenced by:  eupth2lem3lem4  27091
  Copyright terms: Public domain W3C validator