| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupth2lem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for eupth2 27099. (Contributed by Mario Carneiro, 8-Apr-2015.) |
| Ref | Expression |
|---|---|
| eupth2lem2.1 |
|
| Ref | Expression |
|---|---|
| eupth2lem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2623 |
. . . . . . 7
| |
| 2 | 1 | olcd 408 |
. . . . . 6
|
| 3 | 2 | biantrud 528 |
. . . . 5
|
| 4 | eupth2lem2.1 |
. . . . . 6
| |
| 5 | eupth2lem1 27078 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | 3, 6 | syl6bbr 278 |
. . . 4
|
| 8 | simpr 477 |
. . . . 5
| |
| 9 | 8 | eleq1d 2686 |
. . . 4
|
| 10 | 7, 9 | bitrd 268 |
. . 3
|
| 11 | 10 | necon1bbid 2833 |
. 2
|
| 12 | simpl 473 |
. . . . . . 7
| |
| 13 | neeq1 2856 |
. . . . . . 7
| |
| 14 | 12, 13 | syl5ibcom 235 |
. . . . . 6
|
| 15 | 14 | pm4.71rd 667 |
. . . . 5
|
| 16 | eqcom 2629 |
. . . . 5
| |
| 17 | ancom 466 |
. . . . 5
| |
| 18 | 15, 16, 17 | 3bitr4g 303 |
. . . 4
|
| 19 | 12 | neneqd 2799 |
. . . . . . 7
|
| 20 | biorf 420 |
. . . . . . 7
| |
| 21 | 19, 20 | syl 17 |
. . . . . 6
|
| 22 | orcom 402 |
. . . . . 6
| |
| 23 | 21, 22 | syl6bb 276 |
. . . . 5
|
| 24 | 23 | anbi1d 741 |
. . . 4
|
| 25 | 18, 24 | bitrd 268 |
. . 3
|
| 26 | ancom 466 |
. . 3
| |
| 27 | 25, 26 | syl6bbr 278 |
. 2
|
| 28 | eupth2lem1 27078 |
. . . 4
| |
| 29 | 4, 28 | ax-mp 5 |
. . 3
|
| 30 | 8 | eleq1d 2686 |
. . 3
|
| 31 | 29, 30 | syl5bbr 274 |
. 2
|
| 32 | 11, 27, 31 | 3bitrd 294 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: eupth2lem3lem4 27091 |
| Copyright terms: Public domain | W3C validator |