MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem4 Structured version   Visualization version   Unicode version

Theorem eupth2lem3lem4 27091
Description: Lemma for eupth2lem3 27096, formerly part of proof of eupth2lem3 27096: If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v  |-  V  =  (Vtx `  G )
trlsegvdeg.i  |-  I  =  (iEdg `  G )
trlsegvdeg.f  |-  ( ph  ->  Fun  I )
trlsegvdeg.n  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
trlsegvdeg.u  |-  ( ph  ->  U  e.  V )
trlsegvdeg.w  |-  ( ph  ->  F (Trails `  G
) P )
trlsegvdeg.vx  |-  ( ph  ->  (Vtx `  X )  =  V )
trlsegvdeg.vy  |-  ( ph  ->  (Vtx `  Y )  =  V )
trlsegvdeg.vz  |-  ( ph  ->  (Vtx `  Z )  =  V )
trlsegvdeg.ix  |-  ( ph  ->  (iEdg `  X )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
trlsegvdeg.iy  |-  ( ph  ->  (iEdg `  Y )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } )
trlsegvdeg.iz  |-  ( ph  ->  (iEdg `  Z )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
eupth2lem3.o  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  X ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) )
eupth2lem3lem3.e  |-  ( ph  -> if- ( ( P `  N )  =  ( P `  ( N  +  1 ) ) ,  ( I `  ( F `  N ) )  =  { ( P `  N ) } ,  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
eupth2lem3lem4.i  |-  ( ph  ->  ( I `  ( F `  N )
)  e.  ~P V
)
Assertion
Ref Expression
eupth2lem3lem4  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) )  /\  ( U  =  ( P `  N
)  \/  U  =  ( P `  ( N  +  1 ) ) ) )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
Distinct variable groups:    x, U    x, V    x, X
Allowed substitution hints:    ph( x)    P( x)    F( x)    G( x)    I( x)    N( x)    Y( x)    Z( x)

Proof of Theorem eupth2lem3lem4
StepHypRef Expression
1 fvexd 6203 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  ( F `  N )  e.  _V )
2 trlsegvdeg.u . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  V )
32ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  U  e.  V )
4 trlsegvdeg.v . . . . . . . . . . . . . 14  |-  V  =  (Vtx `  G )
5 trlsegvdeg.i . . . . . . . . . . . . . 14  |-  I  =  (iEdg `  G )
6 trlsegvdeg.f . . . . . . . . . . . . . 14  |-  ( ph  ->  Fun  I )
7 trlsegvdeg.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
8 trlsegvdeg.w . . . . . . . . . . . . . 14  |-  ( ph  ->  F (Trails `  G
) P )
94, 5, 6, 7, 2, 8trlsegvdeglem1 27080 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P `  N )  e.  V  /\  ( P `  ( N  +  1 ) )  e.  V ) )
109simprd 479 . . . . . . . . . . . 12  |-  ( ph  ->  ( P `  ( N  +  1 ) )  e.  V )
1110ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  ( P `  ( N  +  1 ) )  e.  V )
12 neeq1 2856 . . . . . . . . . . . . . 14  |-  ( ( P `  N )  =  U  ->  (
( P `  N
)  =/=  ( P `
 ( N  + 
1 ) )  <->  U  =/=  ( P `  ( N  +  1 ) ) ) )
1312biimpcd 239 . . . . . . . . . . . . 13  |-  ( ( P `  N )  =/=  ( P `  ( N  +  1
) )  ->  (
( P `  N
)  =  U  ->  U  =/=  ( P `  ( N  +  1
) ) ) )
1413adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( ( P `  N )  =  U  ->  U  =/=  ( P `  ( N  +  1 ) ) ) )
1514imp 445 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  U  =/=  ( P `  ( N  +  1 ) ) )
16 eupth2lem3lem4.i . . . . . . . . . . . 12  |-  ( ph  ->  ( I `  ( F `  N )
)  e.  ~P V
)
1716ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  (
I `  ( F `  N ) )  e. 
~P V )
18 trlsegvdeg.iy . . . . . . . . . . . 12  |-  ( ph  ->  (iEdg `  Y )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } )
1918ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  (iEdg `  Y )  =  { <. ( F `  N
) ,  ( I `
 ( F `  N ) ) >. } )
20 eupth2lem3lem3.e . . . . . . . . . . . . . 14  |-  ( ph  -> if- ( ( P `  N )  =  ( P `  ( N  +  1 ) ) ,  ( I `  ( F `  N ) )  =  { ( P `  N ) } ,  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
2120adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  -> if- ( ( P `  N )  =  ( P `  ( N  +  1
) ) ,  ( I `  ( F `
 N ) )  =  { ( P `
 N ) } ,  { ( P `
 N ) ,  ( P `  ( N  +  1 ) ) }  C_  (
I `  ( F `  N ) ) ) )
22 df-ne 2795 . . . . . . . . . . . . . . . 16  |-  ( ( P `  N )  =/=  ( P `  ( N  +  1
) )  <->  -.  ( P `  N )  =  ( P `  ( N  +  1
) ) )
23 ifpfal 1024 . . . . . . . . . . . . . . . 16  |-  ( -.  ( P `  N
)  =  ( P `
 ( N  + 
1 ) )  -> 
(if- ( ( P `
 N )  =  ( P `  ( N  +  1 ) ) ,  ( I `
 ( F `  N ) )  =  { ( P `  N ) } ,  { ( P `  N ) ,  ( P `  ( N  +  1 ) ) }  C_  ( I `  ( F `  N
) ) )  <->  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
2422, 23sylbi 207 . . . . . . . . . . . . . . 15  |-  ( ( P `  N )  =/=  ( P `  ( N  +  1
) )  ->  (if- ( ( P `  N )  =  ( P `  ( N  +  1 ) ) ,  ( I `  ( F `  N ) )  =  { ( P `  N ) } ,  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) )  <->  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
2524adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  (if- (
( P `  N
)  =  ( P `
 ( N  + 
1 ) ) ,  ( I `  ( F `  N )
)  =  { ( P `  N ) } ,  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) )  <->  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
26 preq1 4268 . . . . . . . . . . . . . . . 16  |-  ( ( P `  N )  =  U  ->  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  =  { U ,  ( P `
 ( N  + 
1 ) ) } )
2726sseq1d 3632 . . . . . . . . . . . . . . 15  |-  ( ( P `  N )  =  U  ->  ( { ( P `  N ) ,  ( P `  ( N  +  1 ) ) }  C_  ( I `  ( F `  N
) )  <->  { U ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
2827biimpcd 239 . . . . . . . . . . . . . 14  |-  ( { ( P `  N
) ,  ( P `
 ( N  + 
1 ) ) } 
C_  ( I `  ( F `  N ) )  ->  ( ( P `  N )  =  U  ->  { U ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
2925, 28syl6bi 243 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  (if- (
( P `  N
)  =  ( P `
 ( N  + 
1 ) ) ,  ( I `  ( F `  N )
)  =  { ( P `  N ) } ,  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) )  ->  (
( P `  N
)  =  U  ->  { U ,  ( P `
 ( N  + 
1 ) ) } 
C_  ( I `  ( F `  N ) ) ) ) )
3021, 29mpd 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( ( P `  N )  =  U  ->  { U ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) ) )
3130imp 445 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  { U ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) )
32 trlsegvdeg.vy . . . . . . . . . . . 12  |-  ( ph  ->  (Vtx `  Y )  =  V )
3332ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  (Vtx `  Y )  =  V )
341, 3, 11, 15, 17, 19, 31, 331hegrvtxdg1 26403 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  (
(VtxDeg `  Y ) `  U )  =  1 )
3534oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  (
( (VtxDeg `  X
) `  U )  +  ( (VtxDeg `  Y ) `  U
) )  =  ( ( (VtxDeg `  X
) `  U )  +  1 ) )
3635breq2d 4665 . . . . . . . 8  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  (
2  ||  ( (
(VtxDeg `  X ) `  U )  +  ( (VtxDeg `  Y ) `  U ) )  <->  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) ) )
3736notbid 308 . . . . . . 7  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U )  +  ( (VtxDeg `  Y ) `  U ) )  <->  -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) ) )
38 trlsegvdeg.vx . . . . . . . . . . . . . . 15  |-  ( ph  ->  (Vtx `  X )  =  V )
39 trlsegvdeg.vz . . . . . . . . . . . . . . 15  |-  ( ph  ->  (Vtx `  Z )  =  V )
40 trlsegvdeg.ix . . . . . . . . . . . . . . 15  |-  ( ph  ->  (iEdg `  X )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
41 trlsegvdeg.iz . . . . . . . . . . . . . . 15  |-  ( ph  ->  (iEdg `  Z )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
424, 5, 6, 7, 2, 8, 38, 32, 39, 40, 18, 41eupth2lem3lem1 27088 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (VtxDeg `  X
) `  U )  e.  NN0 )
4342nn0zd 11480 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (VtxDeg `  X
) `  U )  e.  ZZ )
44 2nn 11185 . . . . . . . . . . . . . 14  |-  2  e.  NN
4544a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  2  e.  NN )
46 1lt2 11194 . . . . . . . . . . . . . 14  |-  1  <  2
4746a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <  2 )
48 ndvdsp1 15135 . . . . . . . . . . . . 13  |-  ( ( ( (VtxDeg `  X
) `  U )  e.  ZZ  /\  2  e.  NN  /\  1  <  2 )  ->  (
2  ||  ( (VtxDeg `  X ) `  U
)  ->  -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) ) )
4943, 45, 47, 48syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  ||  (
(VtxDeg `  X ) `  U )  ->  -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) ) )
5049con2d 129 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  ||  (
( (VtxDeg `  X
) `  U )  +  1 )  ->  -.  2  ||  ( (VtxDeg `  X ) `  U
) ) )
51 1z 11407 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
52 n2dvds1 15104 . . . . . . . . . . . . . 14  |-  -.  2  ||  1
53 opoe 15087 . . . . . . . . . . . . . 14  |-  ( ( ( ( (VtxDeg `  X ) `  U
)  e.  ZZ  /\  -.  2  ||  ( (VtxDeg `  X ) `  U
) )  /\  (
1  e.  ZZ  /\  -.  2  ||  1 ) )  ->  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) )
5451, 52, 53mpanr12 721 . . . . . . . . . . . . 13  |-  ( ( ( (VtxDeg `  X
) `  U )  e.  ZZ  /\  -.  2  ||  ( (VtxDeg `  X
) `  U )
)  ->  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) )
5554ex 450 . . . . . . . . . . . 12  |-  ( ( (VtxDeg `  X ) `  U )  e.  ZZ  ->  ( -.  2  ||  ( (VtxDeg `  X ) `  U )  ->  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) ) )
5643, 55syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( -.  2  ||  ( (VtxDeg `  X ) `  U )  ->  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) ) )
5750, 56impbid 202 . . . . . . . . . 10  |-  ( ph  ->  ( 2  ||  (
( (VtxDeg `  X
) `  U )  +  1 )  <->  -.  2  ||  ( (VtxDeg `  X
) `  U )
) )
58 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( x  =  U  ->  (
(VtxDeg `  X ) `  x )  =  ( (VtxDeg `  X ) `  U ) )
5958breq2d 4665 . . . . . . . . . . . . 13  |-  ( x  =  U  ->  (
2  ||  ( (VtxDeg `  X ) `  x
)  <->  2  ||  (
(VtxDeg `  X ) `  U ) ) )
6059notbid 308 . . . . . . . . . . . 12  |-  ( x  =  U  ->  ( -.  2  ||  ( (VtxDeg `  X ) `  x
)  <->  -.  2  ||  ( (VtxDeg `  X ) `  U ) ) )
6160elrab3 3364 . . . . . . . . . . 11  |-  ( U  e.  V  ->  ( U  e.  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  X ) `  x
) }  <->  -.  2  ||  ( (VtxDeg `  X
) `  U )
) )
622, 61syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( U  e.  {
x  e.  V  |  -.  2  ||  ( (VtxDeg `  X ) `  x
) }  <->  -.  2  ||  ( (VtxDeg `  X
) `  U )
) )
63 eupth2lem3.o . . . . . . . . . . 11  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  X ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) )
6463eleq2d 2687 . . . . . . . . . 10  |-  ( ph  ->  ( U  e.  {
x  e.  V  |  -.  2  ||  ( (VtxDeg `  X ) `  x
) }  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) ) )
6557, 62, 643bitr2d 296 . . . . . . . . 9  |-  ( ph  ->  ( 2  ||  (
( (VtxDeg `  X
) `  U )  +  1 )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) ) )
6665notbid 308 . . . . . . . 8  |-  ( ph  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 )  <->  -.  U  e.  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) ) )
6766ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U )  +  1 )  <->  -.  U  e.  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) ) )
68 fvex 6201 . . . . . . . . 9  |-  ( P `
 N )  e. 
_V
6968eupth2lem2 27079 . . . . . . . 8  |-  ( ( ( P `  N
)  =/=  ( P `
 ( N  + 
1 ) )  /\  ( P `  N )  =  U )  -> 
( -.  U  e.  if ( ( P `
 0 )  =  ( P `  N
) ,  (/) ,  {
( P `  0
) ,  ( P `
 N ) } )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
7069adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  ( -.  U  e.  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } )  <-> 
U  e.  if ( ( P `  0
)  =  ( P `
 ( N  + 
1 ) ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  ( N  +  1 ) ) } ) ) )
7137, 67, 703bitrd 294 . . . . . 6  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  N )  =  U )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U )  +  ( (VtxDeg `  Y ) `  U ) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
7271expcom 451 . . . . 5  |-  ( ( P `  N )  =  U  ->  (
( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U )  +  ( (VtxDeg `  Y ) `  U ) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
7372eqcoms 2630 . . . 4  |-  ( U  =  ( P `  N )  ->  (
( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U )  +  ( (VtxDeg `  Y ) `  U ) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
74 fvexd 6203 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( F `  N
)  e.  _V )
759simpld 475 . . . . . . . . . . . 12  |-  ( ph  ->  ( P `  N
)  e.  V )
7675ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( P `  N
)  e.  V )
772ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  ->  U  e.  V )
78 neeq2 2857 . . . . . . . . . . . . . 14  |-  ( ( P `  ( N  +  1 ) )  =  U  ->  (
( P `  N
)  =/=  ( P `
 ( N  + 
1 ) )  <->  ( P `  N )  =/=  U
) )
7978biimpcd 239 . . . . . . . . . . . . 13  |-  ( ( P `  N )  =/=  ( P `  ( N  +  1
) )  ->  (
( P `  ( N  +  1 ) )  =  U  -> 
( P `  N
)  =/=  U ) )
8079adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( ( P `  ( N  +  1 ) )  =  U  ->  ( P `  N )  =/=  U ) )
8180imp 445 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( P `  N
)  =/=  U )
8216ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( I `  ( F `  N )
)  e.  ~P V
)
8318ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
(iEdg `  Y )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } )
84 preq2 4269 . . . . . . . . . . . . . . . 16  |-  ( ( P `  ( N  +  1 ) )  =  U  ->  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  =  { ( P `  N ) ,  U } )
8584sseq1d 3632 . . . . . . . . . . . . . . 15  |-  ( ( P `  ( N  +  1 ) )  =  U  ->  ( { ( P `  N ) ,  ( P `  ( N  +  1 ) ) }  C_  ( I `  ( F `  N
) )  <->  { ( P `  N ) ,  U }  C_  (
I `  ( F `  N ) ) ) )
8685biimpcd 239 . . . . . . . . . . . . . 14  |-  ( { ( P `  N
) ,  ( P `
 ( N  + 
1 ) ) } 
C_  ( I `  ( F `  N ) )  ->  ( ( P `  ( N  +  1 ) )  =  U  ->  { ( P `  N ) ,  U }  C_  ( I `  ( F `  N )
) ) )
8725, 86syl6bi 243 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  (if- (
( P `  N
)  =  ( P `
 ( N  + 
1 ) ) ,  ( I `  ( F `  N )
)  =  { ( P `  N ) } ,  { ( P `  N ) ,  ( P `  ( N  +  1
) ) }  C_  ( I `  ( F `  N )
) )  ->  (
( P `  ( N  +  1 ) )  =  U  ->  { ( P `  N ) ,  U }  C_  ( I `  ( F `  N ) ) ) ) )
8821, 87mpd 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( ( P `  ( N  +  1 ) )  =  U  ->  { ( P `  N ) ,  U }  C_  ( I `  ( F `  N )
) ) )
8988imp 445 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  ->  { ( P `  N ) ,  U }  C_  ( I `  ( F `  N ) ) )
9032ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
(Vtx `  Y )  =  V )
9174, 76, 77, 81, 82, 83, 89, 901hegrvtxdg1r 26404 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( (VtxDeg `  Y
) `  U )  =  1 )
9291oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  =  ( ( (VtxDeg `  X
) `  U )  +  1 ) )
9392breq2d 4665 . . . . . . . 8  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( 2  ||  (
( (VtxDeg `  X
) `  U )  +  ( (VtxDeg `  Y ) `  U
) )  <->  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) ) )
9493notbid 308 . . . . . . 7  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 ) ) )
9566ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  1 )  <->  -.  U  e.  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) ) )
96 necom 2847 . . . . . . . . . 10  |-  ( ( P `  N )  =/=  ( P `  ( N  +  1
) )  <->  ( P `  ( N  +  1 ) )  =/=  ( P `  N )
)
97 fvex 6201 . . . . . . . . . . 11  |-  ( P `
 ( N  + 
1 ) )  e. 
_V
9897eupth2lem2 27079 . . . . . . . . . 10  |-  ( ( ( P `  ( N  +  1 ) )  =/=  ( P `
 N )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( -.  U  e.  if ( ( P `
 0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  {
( P `  0
) ,  ( P `
 ( N  + 
1 ) ) } )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) ) )
9996, 98sylanb 489 . . . . . . . . 9  |-  ( ( ( P `  N
)  =/=  ( P `
 ( N  + 
1 ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( -.  U  e.  if ( ( P `
 0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  {
( P `  0
) ,  ( P `
 ( N  + 
1 ) ) } )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  N ) ,  (/) ,  { ( P `  0 ) ,  ( P `  N ) } ) ) )
10099con1bid 345 . . . . . . . 8  |-  ( ( ( P `  N
)  =/=  ( P `
 ( N  + 
1 ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( -.  U  e.  if ( ( P `
 0 )  =  ( P `  N
) ,  (/) ,  {
( P `  0
) ,  ( P `
 N ) } )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
101100adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( -.  U  e.  if ( ( P `
 0 )  =  ( P `  N
) ,  (/) ,  {
( P `  0
) ,  ( P `
 N ) } )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
10294, 95, 1013bitrd 294 . . . . . 6  |-  ( ( ( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  /\  ( P `  ( N  +  1 ) )  =  U )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
103102expcom 451 . . . . 5  |-  ( ( P `  ( N  +  1 ) )  =  U  ->  (
( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U )  +  ( (VtxDeg `  Y ) `  U ) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
104103eqcoms 2630 . . . 4  |-  ( U  =  ( P `  ( N  +  1
) )  ->  (
( ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U )  +  ( (VtxDeg `  Y ) `  U ) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
10573, 104jaoi 394 . . 3  |-  ( ( U  =  ( P `
 N )  \/  U  =  ( P `
 ( N  + 
1 ) ) )  ->  ( ( ph  /\  ( P `  N
)  =/=  ( P `
 ( N  + 
1 ) ) )  ->  ( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
106105com12 32 . 2  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) ) )  ->  ( ( U  =  ( P `  N )  \/  U  =  ( P `  ( N  +  1
) ) )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) ) )
1071063impia 1261 1  |-  ( (
ph  /\  ( P `  N )  =/=  ( P `  ( N  +  1 ) )  /\  ( U  =  ( P `  N
)  \/  U  =  ( P `  ( N  +  1 ) ) ) )  -> 
( -.  2  ||  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) )  <->  U  e.  if ( ( P ` 
0 )  =  ( P `  ( N  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( N  +  1
) ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384  if-wif 1012    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |` cres 5116   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074   NNcn 11020   2c2 11070   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117    || cdvds 14983  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361  Trailsctrls 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-vtxdg 26362  df-wlks 26495  df-trls 26589
This theorem is referenced by:  eupth2lem3lem7  27094
  Copyright terms: Public domain W3C validator