| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eupth2lem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for eupth2 27099. (Contributed by Mario Carneiro, 8-Apr-2015.) |
| Ref | Expression |
|---|---|
| eupth2lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2690 |
. . 3
| |
| 2 | 1 | bibi1d 333 |
. 2
|
| 3 | eleq2 2690 |
. . 3
| |
| 4 | 3 | bibi1d 333 |
. 2
|
| 5 | noel 3919 |
. . . 4
| |
| 6 | 5 | a1i 11 |
. . 3
|
| 7 | simpl 473 |
. . . . 5
| |
| 8 | 7 | neneqd 2799 |
. . . 4
|
| 9 | simpr 477 |
. . . 4
| |
| 10 | 8, 9 | nsyl3 133 |
. . 3
|
| 11 | 6, 10 | 2falsed 366 |
. 2
|
| 12 | elprg 4196 |
. . 3
| |
| 13 | df-ne 2795 |
. . . 4
| |
| 14 | ibar 525 |
. . . 4
| |
| 15 | 13, 14 | sylbir 225 |
. . 3
|
| 16 | 12, 15 | sylan9bb 736 |
. 2
|
| 17 | 2, 4, 11, 16 | ifbothda 4123 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: eupth2lem2 27079 eupth2lem3lem6 27093 |
| Copyright terms: Public domain | W3C validator |