MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2 Structured version   Visualization version   Unicode version

Theorem eupth2 27099
Description: The only vertices of odd degree in a graph with an Eulerian path are the endpoints, and then only if the endpoints are distinct. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v  |-  V  =  (Vtx `  G )
eupth2.i  |-  I  =  (iEdg `  G )
eupth2.g  |-  ( ph  ->  G  e. UPGraph  )
eupth2.f  |-  ( ph  ->  Fun  I )
eupth2.p  |-  ( ph  ->  F (EulerPaths `  G
) P )
Assertion
Ref Expression
eupth2  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  G ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  ( # `  F ) ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  ( # `
 F ) ) } ) )
Distinct variable groups:    ph, x    x, F    x, I    x, V
Allowed substitution hints:    P( x)    G( x)

Proof of Theorem eupth2
Dummy variables  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eupth2.v . . . . . . 7  |-  V  =  (Vtx `  G )
2 eupth2.i . . . . . . 7  |-  I  =  (iEdg `  G )
3 eupth2.g . . . . . . 7  |-  ( ph  ->  G  e. UPGraph  )
4 eupth2.f . . . . . . 7  |-  ( ph  ->  Fun  I )
5 eupth2.p . . . . . . 7  |-  ( ph  ->  F (EulerPaths `  G
) P )
6 eqid 2622 . . . . . . 7  |-  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.  =  <. V ,  ( I  |`  ( F " ( 0..^ ( # `  F ) ) ) ) >.
71, 2, 3, 4, 5, 6eupthvdres 27095 . . . . . 6  |-  ( ph  ->  (VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
)  =  (VtxDeg `  G ) )
87fveq1d 6193 . . . . 5  |-  ( ph  ->  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ ( # `  F
) ) ) )
>. ) `  x )  =  ( (VtxDeg `  G ) `  x
) )
98breq2d 4665 . . . 4  |-  ( ph  ->  ( 2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x )  <->  2 
||  ( (VtxDeg `  G ) `  x
) ) )
109notbid 308 . . 3  |-  ( ph  ->  ( -.  2  ||  ( (VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x )  <->  -.  2  ||  ( (VtxDeg `  G ) `  x
) ) )
1110rabbidv 3189 . 2  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x ) }  =  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  G ) `  x
) } )
12 eupthiswlk 27072 . . . 4  |-  ( F (EulerPaths `  G ) P  ->  F (Walks `  G ) P )
13 wlkcl 26511 . . . 4  |-  ( F (Walks `  G ) P  ->  ( # `  F
)  e.  NN0 )
145, 12, 133syl 18 . . 3  |-  ( ph  ->  ( # `  F
)  e.  NN0 )
15 nn0re 11301 . . . . 5  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  e.  RR )
1615leidd 10594 . . . 4  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  <_  ( # `  F
) )
17 breq1 4656 . . . . . . 7  |-  ( m  =  0  ->  (
m  <_  ( # `  F
)  <->  0  <_  ( # `
 F ) ) )
18 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( m  =  0  ->  (
0..^ m )  =  ( 0..^ 0 ) )
1918imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( m  =  0  ->  ( F " ( 0..^ m ) )  =  ( F " ( 0..^ 0 ) ) )
2019reseq2d 5396 . . . . . . . . . . . . . 14  |-  ( m  =  0  ->  (
I  |`  ( F "
( 0..^ m ) ) )  =  ( I  |`  ( F " ( 0..^ 0 ) ) ) )
2120opeq2d 4409 . . . . . . . . . . . . 13  |-  ( m  =  0  ->  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.  =  <. V ,  ( I  |`  ( F " ( 0..^ 0 ) ) ) >. )
2221fveq2d 6195 . . . . . . . . . . . 12  |-  ( m  =  0  ->  (VtxDeg ` 
<. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. )  =  (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ 0 ) ) ) >. )
)
2322fveq1d 6193 . . . . . . . . . . 11  |-  ( m  =  0  ->  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x )  =  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ 0 ) ) ) >. ) `  x
) )
2423breq2d 4665 . . . . . . . . . 10  |-  ( m  =  0  ->  (
2  ||  ( (VtxDeg ` 
<. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
)  <->  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ 0 ) ) ) >.
) `  x )
) )
2524notbid 308 . . . . . . . . 9  |-  ( m  =  0  ->  ( -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ m ) ) ) >. ) `  x )  <->  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ 0 ) ) )
>. ) `  x ) ) )
2625rabbidv 3189 . . . . . . . 8  |-  ( m  =  0  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
) }  =  {
x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ 0 ) ) ) >. ) `  x ) } )
27 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  0  ->  ( P `  m )  =  ( P ` 
0 ) )
2827eqeq2d 2632 . . . . . . . . 9  |-  ( m  =  0  ->  (
( P `  0
)  =  ( P `
 m )  <->  ( P `  0 )  =  ( P `  0
) ) )
2927preq2d 4275 . . . . . . . . 9  |-  ( m  =  0  ->  { ( P `  0 ) ,  ( P `  m ) }  =  { ( P ` 
0 ) ,  ( P `  0 ) } )
3028, 29ifbieq2d 4111 . . . . . . . 8  |-  ( m  =  0  ->  if ( ( P ` 
0 )  =  ( P `  m ) ,  (/) ,  { ( P `  0 ) ,  ( P `  m ) } )  =  if ( ( P `  0 )  =  ( P ` 
0 ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  0 ) } ) )
3126, 30eqeq12d 2637 . . . . . . 7  |-  ( m  =  0  ->  ( { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 m ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  m
) } )  <->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ 0 ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  0 ) ,  (/) ,  { ( P `  0 ) ,  ( P ` 
0 ) } ) ) )
3217, 31imbi12d 334 . . . . . 6  |-  ( m  =  0  ->  (
( m  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 m ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  m
) } ) )  <-> 
( 0  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ 0 ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 0 ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  0
) } ) ) ) )
3332imbi2d 330 . . . . 5  |-  ( m  =  0  ->  (
( ph  ->  ( m  <_  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  m ) ,  (/) ,  { ( P `  0 ) ,  ( P `  m ) } ) ) )  <->  ( ph  ->  ( 0  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ 0 ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 0 ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  0
) } ) ) ) ) )
34 breq1 4656 . . . . . . 7  |-  ( m  =  n  ->  (
m  <_  ( # `  F
)  <->  n  <_  ( # `  F ) ) )
35 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( m  =  n  ->  (
0..^ m )  =  ( 0..^ n ) )
3635imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( m  =  n  ->  ( F " ( 0..^ m ) )  =  ( F " ( 0..^ n ) ) )
3736reseq2d 5396 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
I  |`  ( F "
( 0..^ m ) ) )  =  ( I  |`  ( F " ( 0..^ n ) ) ) )
3837opeq2d 4409 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.  =  <. V ,  ( I  |`  ( F " ( 0..^ n ) ) ) >. )
3938fveq2d 6195 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (VtxDeg ` 
<. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. )  =  (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ n ) ) ) >. )
)
4039fveq1d 6193 . . . . . . . . . . 11  |-  ( m  =  n  ->  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x )  =  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ n ) ) ) >. ) `  x
) )
4140breq2d 4665 . . . . . . . . . 10  |-  ( m  =  n  ->  (
2  ||  ( (VtxDeg ` 
<. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
)  <->  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ n ) ) ) >.
) `  x )
) )
4241notbid 308 . . . . . . . . 9  |-  ( m  =  n  ->  ( -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ m ) ) ) >. ) `  x )  <->  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ n ) ) )
>. ) `  x ) ) )
4342rabbidv 3189 . . . . . . . 8  |-  ( m  =  n  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
) }  =  {
x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ n ) ) ) >. ) `  x ) } )
44 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  n  ->  ( P `  m )  =  ( P `  n ) )
4544eqeq2d 2632 . . . . . . . . 9  |-  ( m  =  n  ->  (
( P `  0
)  =  ( P `
 m )  <->  ( P `  0 )  =  ( P `  n
) ) )
4644preq2d 4275 . . . . . . . . 9  |-  ( m  =  n  ->  { ( P `  0 ) ,  ( P `  m ) }  =  { ( P ` 
0 ) ,  ( P `  n ) } )
4745, 46ifbieq2d 4111 . . . . . . . 8  |-  ( m  =  n  ->  if ( ( P ` 
0 )  =  ( P `  m ) ,  (/) ,  { ( P `  0 ) ,  ( P `  m ) } )  =  if ( ( P `  0 )  =  ( P `  n ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  n ) } ) )
4843, 47eqeq12d 2637 . . . . . . 7  |-  ( m  =  n  ->  ( { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 m ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  m
) } )  <->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ n ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  n ) ,  (/) ,  { ( P `  0 ) ,  ( P `  n ) } ) ) )
4934, 48imbi12d 334 . . . . . 6  |-  ( m  =  n  ->  (
( m  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 m ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  m
) } ) )  <-> 
( n  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ n ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 n ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  n
) } ) ) ) )
5049imbi2d 330 . . . . 5  |-  ( m  =  n  ->  (
( ph  ->  ( m  <_  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  m ) ,  (/) ,  { ( P `  0 ) ,  ( P `  m ) } ) ) )  <->  ( ph  ->  ( n  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ n ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 n ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  n
) } ) ) ) ) )
51 breq1 4656 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  (
m  <_  ( # `  F
)  <->  ( n  + 
1 )  <_  ( # `
 F ) ) )
52 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( n  + 
1 )  ->  (
0..^ m )  =  ( 0..^ ( n  +  1 ) ) )
5352imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( m  =  ( n  + 
1 )  ->  ( F " ( 0..^ m ) )  =  ( F " ( 0..^ ( n  +  1 ) ) ) )
5453reseq2d 5396 . . . . . . . . . . . . . 14  |-  ( m  =  ( n  + 
1 )  ->  (
I  |`  ( F "
( 0..^ m ) ) )  =  ( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) ) )
5554opeq2d 4409 . . . . . . . . . . . . 13  |-  ( m  =  ( n  + 
1 )  ->  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.  =  <. V ,  ( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) ) >. )
5655fveq2d 6195 . . . . . . . . . . . 12  |-  ( m  =  ( n  + 
1 )  ->  (VtxDeg ` 
<. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. )  =  (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) ) >. )
)
5756fveq1d 6193 . . . . . . . . . . 11  |-  ( m  =  ( n  + 
1 )  ->  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x )  =  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ ( n  + 
1 ) ) ) ) >. ) `  x
) )
5857breq2d 4665 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  (
2  ||  ( (VtxDeg ` 
<. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
)  <->  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) ) >.
) `  x )
) )
5958notbid 308 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  ( -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ m ) ) ) >. ) `  x )  <->  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) )
>. ) `  x ) ) )
6059rabbidv 3189 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
) }  =  {
x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) ) >. ) `  x ) } )
61 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  ( n  + 
1 )  ->  ( P `  m )  =  ( P `  ( n  +  1
) ) )
6261eqeq2d 2632 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  (
( P `  0
)  =  ( P `
 m )  <->  ( P `  0 )  =  ( P `  (
n  +  1 ) ) ) )
6361preq2d 4275 . . . . . . . . 9  |-  ( m  =  ( n  + 
1 )  ->  { ( P `  0 ) ,  ( P `  m ) }  =  { ( P ` 
0 ) ,  ( P `  ( n  +  1 ) ) } )
6462, 63ifbieq2d 4111 . . . . . . . 8  |-  ( m  =  ( n  + 
1 )  ->  if ( ( P ` 
0 )  =  ( P `  m ) ,  (/) ,  { ( P `  0 ) ,  ( P `  m ) } )  =  if ( ( P `  0 )  =  ( P `  ( n  +  1
) ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  ( n  +  1 ) ) } ) )
6560, 64eqeq12d 2637 . . . . . . 7  |-  ( m  =  ( n  + 
1 )  ->  ( { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 m ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  m
) } )  <->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ ( n  + 
1 ) ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  ( n  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( n  +  1
) ) } ) ) )
6651, 65imbi12d 334 . . . . . 6  |-  ( m  =  ( n  + 
1 )  ->  (
( m  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 m ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  m
) } ) )  <-> 
( ( n  + 
1 )  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 ( n  + 
1 ) ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  (
n  +  1 ) ) } ) ) ) )
6766imbi2d 330 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
( ph  ->  ( m  <_  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  m ) ,  (/) ,  { ( P `  0 ) ,  ( P `  m ) } ) ) )  <->  ( ph  ->  ( ( n  + 
1 )  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 ( n  + 
1 ) ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  (
n  +  1 ) ) } ) ) ) ) )
68 breq1 4656 . . . . . . 7  |-  ( m  =  ( # `  F
)  ->  ( m  <_  ( # `  F
)  <->  ( # `  F
)  <_  ( # `  F
) ) )
69 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( m  =  ( # `  F
)  ->  ( 0..^ m )  =  ( 0..^ ( # `  F
) ) )
7069imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( m  =  ( # `  F
)  ->  ( F " ( 0..^ m ) )  =  ( F
" ( 0..^ (
# `  F )
) ) )
7170reseq2d 5396 . . . . . . . . . . . . . 14  |-  ( m  =  ( # `  F
)  ->  ( I  |`  ( F " (
0..^ m ) ) )  =  ( I  |`  ( F " (
0..^ ( # `  F
) ) ) ) )
7271opeq2d 4409 . . . . . . . . . . . . 13  |-  ( m  =  ( # `  F
)  ->  <. V , 
( I  |`  ( F " ( 0..^ m ) ) ) >.  =  <. V ,  ( I  |`  ( F " ( 0..^ ( # `  F ) ) ) ) >. )
7372fveq2d 6195 . . . . . . . . . . . 12  |-  ( m  =  ( # `  F
)  ->  (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ m ) ) )
>. )  =  (VtxDeg ` 
<. V ,  ( I  |`  ( F " (
0..^ ( # `  F
) ) ) )
>. ) )
7473fveq1d 6193 . . . . . . . . . . 11  |-  ( m  =  ( # `  F
)  ->  ( (VtxDeg ` 
<. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
)  =  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ ( # `  F ) ) ) ) >. ) `  x
) )
7574breq2d 4665 . . . . . . . . . 10  |-  ( m  =  ( # `  F
)  ->  ( 2 
||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
)  <->  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x )
) )
7675notbid 308 . . . . . . . . 9  |-  ( m  =  ( # `  F
)  ->  ( -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
)  <->  -.  2  ||  ( (VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x )
) )
7776rabbidv 3189 . . . . . . . 8  |-  ( m  =  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
) }  =  {
x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ ( # `  F ) ) ) ) >. ) `  x
) } )
78 fveq2 6191 . . . . . . . . . 10  |-  ( m  =  ( # `  F
)  ->  ( P `  m )  =  ( P `  ( # `  F ) ) )
7978eqeq2d 2632 . . . . . . . . 9  |-  ( m  =  ( # `  F
)  ->  ( ( P `  0 )  =  ( P `  m )  <->  ( P `  0 )  =  ( P `  ( # `
 F ) ) ) )
8078preq2d 4275 . . . . . . . . 9  |-  ( m  =  ( # `  F
)  ->  { ( P `  0 ) ,  ( P `  m ) }  =  { ( P ` 
0 ) ,  ( P `  ( # `  F ) ) } )
8179, 80ifbieq2d 4111 . . . . . . . 8  |-  ( m  =  ( # `  F
)  ->  if (
( P `  0
)  =  ( P `
 m ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  m
) } )  =  if ( ( P `
 0 )  =  ( P `  ( # `
 F ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( # `  F ) ) } ) )
8277, 81eqeq12d 2637 . . . . . . 7  |-  ( m  =  ( # `  F
)  ->  ( {
x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ m ) ) ) >. ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  m ) ,  (/) ,  { ( P `  0 ) ,  ( P `  m ) } )  <->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 ( # `  F
) ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  ( # `  F ) ) } ) ) )
8368, 82imbi12d 334 . . . . . 6  |-  ( m  =  ( # `  F
)  ->  ( (
m  <_  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ m ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  m ) ,  (/) ,  { ( P `  0 ) ,  ( P `  m ) } ) )  <->  ( ( # `  F )  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 ( # `  F
) ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  ( # `  F ) ) } ) ) ) )
8483imbi2d 330 . . . . 5  |-  ( m  =  ( # `  F
)  ->  ( ( ph  ->  ( m  <_ 
( # `  F )  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ m ) ) )
>. ) `  x ) }  =  if ( ( P `  0
)  =  ( P `
 m ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  m
) } ) ) )  <->  ( ph  ->  ( ( # `  F
)  <_  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ ( # `  F
) ) ) )
>. ) `  x ) }  =  if ( ( P `  0
)  =  ( P `
 ( # `  F
) ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  ( # `  F ) ) } ) ) ) ) )
851, 2, 3, 4, 5eupth2lemb 27097 . . . . . . 7  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ 0 ) ) ) >.
) `  x ) }  =  (/) )
86 eqid 2622 . . . . . . . 8  |-  ( P `
 0 )  =  ( P `  0
)
8786iftruei 4093 . . . . . . 7  |-  if ( ( P `  0
)  =  ( P `
 0 ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  0
) } )  =  (/)
8885, 87syl6eqr 2674 . . . . . 6  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ 0 ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 0 ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  0
) } ) )
8988a1d 25 . . . . 5  |-  ( ph  ->  ( 0  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ 0 ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 0 ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  0
) } ) ) )
901, 2, 3, 4, 5eupth2lems 27098 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
n  <_  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ n ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  n ) ,  (/) ,  { ( P `  0 ) ,  ( P `  n ) } ) )  ->  ( (
n  +  1 )  <_  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ ( n  + 
1 ) ) ) ) >. ) `  x
) }  =  if ( ( P ` 
0 )  =  ( P `  ( n  +  1 ) ) ,  (/) ,  { ( P `  0 ) ,  ( P `  ( n  +  1
) ) } ) ) ) )
9190expcom 451 . . . . . 6  |-  ( n  e.  NN0  ->  ( ph  ->  ( ( n  <_ 
( # `  F )  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ n ) ) )
>. ) `  x ) }  =  if ( ( P `  0
)  =  ( P `
 n ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  n
) } ) )  ->  ( ( n  +  1 )  <_ 
( # `  F )  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) )
>. ) `  x ) }  =  if ( ( P `  0
)  =  ( P `
 ( n  + 
1 ) ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  (
n  +  1 ) ) } ) ) ) ) )
9291a2d 29 . . . . 5  |-  ( n  e.  NN0  ->  ( (
ph  ->  ( n  <_ 
( # `  F )  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " ( 0..^ n ) ) )
>. ) `  x ) }  =  if ( ( P `  0
)  =  ( P `
 n ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  n
) } ) ) )  ->  ( ph  ->  ( ( n  + 
1 )  <_  ( # `
 F )  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ ( n  +  1 ) ) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 ( n  + 
1 ) ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  (
n  +  1 ) ) } ) ) ) ) )
9333, 50, 67, 84, 89, 92nn0ind 11472 . . . 4  |-  ( (
# `  F )  e.  NN0  ->  ( ph  ->  ( ( # `  F
)  <_  ( # `  F
)  ->  { x  e.  V  |  -.  2  ||  ( (VtxDeg `  <. V ,  ( I  |`  ( F " (
0..^ ( # `  F
) ) ) )
>. ) `  x ) }  =  if ( ( P `  0
)  =  ( P `
 ( # `  F
) ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  ( # `  F ) ) } ) ) ) )
9416, 93mpid 44 . . 3  |-  ( (
# `  F )  e.  NN0  ->  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 ( # `  F
) ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  ( # `  F ) ) } ) ) )
9514, 94mpcom 38 . 2  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  <. V , 
( I  |`  ( F " ( 0..^ (
# `  F )
) ) ) >.
) `  x ) }  =  if (
( P `  0
)  =  ( P `
 ( # `  F
) ) ,  (/) ,  { ( P ` 
0 ) ,  ( P `  ( # `  F ) ) } ) )
9611, 95eqtr3d 2658 1  |-  ( ph  ->  { x  e.  V  |  -.  2  ||  (
(VtxDeg `  G ) `  x ) }  =  if ( ( P ` 
0 )  =  ( P `  ( # `  F ) ) ,  (/) ,  { ( P `
 0 ) ,  ( P `  ( # `
 F ) ) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   (/)c0 3915   ifcif 4086   {cpr 4179   <.cop 4183   class class class wbr 4653    |` cres 5116   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075   2c2 11070   NN0cn0 11292  ..^cfzo 12465   #chash 13117    || cdvds 14983  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975  VtxDegcvtxdg 26361  Walkscwlks 26492  EulerPathsceupth 27057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-ushgr 25954  df-upgr 25977  df-uspgr 26045  df-vtxdg 26362  df-wlks 26495  df-trls 26589  df-eupth 27058
This theorem is referenced by:  eulerpathpr  27100  eulercrct  27102
  Copyright terms: Public domain W3C validator