Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topdifinfindis Structured version   Visualization version   Unicode version

Theorem topdifinfindis 33194
Description: Part of Exercise 3 of [Munkres] p. 83. The topology of all subsets  x of  A such that the complement of  x in  A is infinite, or  x is the empty set, or  x is all of  A, is the trivial topology when  A is finite. (Contributed by ML, 14-Jul-2020.)
Hypothesis
Ref Expression
topdifinf.t  |-  T  =  { x  e.  ~P A  |  ( -.  ( A  \  x
)  e.  Fin  \/  ( x  =  (/)  \/  x  =  A ) ) }
Assertion
Ref Expression
topdifinfindis  |-  ( A  e.  Fin  ->  T  =  { (/) ,  A }
)
Distinct variable group:    x, A
Allowed substitution hint:    T( x)

Proof of Theorem topdifinfindis
StepHypRef Expression
1 nfv 1843 . 2  |-  F/ x  A  e.  Fin
2 topdifinf.t . . 3  |-  T  =  { x  e.  ~P A  |  ( -.  ( A  \  x
)  e.  Fin  \/  ( x  =  (/)  \/  x  =  A ) ) }
3 nfrab1 3122 . . 3  |-  F/_ x { x  e.  ~P A  |  ( -.  ( A  \  x
)  e.  Fin  \/  ( x  =  (/)  \/  x  =  A ) ) }
42, 3nfcxfr 2762 . 2  |-  F/_ x T
5 nfcv 2764 . 2  |-  F/_ x { (/) ,  A }
6 0elpw 4834 . . . . . 6  |-  (/)  e.  ~P A
7 eleq1a 2696 . . . . . 6  |-  ( (/)  e.  ~P A  ->  (
x  =  (/)  ->  x  e.  ~P A ) )
86, 7mp1i 13 . . . . 5  |-  ( A  e.  Fin  ->  (
x  =  (/)  ->  x  e.  ~P A ) )
9 pwidg 4173 . . . . . 6  |-  ( A  e.  Fin  ->  A  e.  ~P A )
10 eleq1a 2696 . . . . . 6  |-  ( A  e.  ~P A  -> 
( x  =  A  ->  x  e.  ~P A ) )
119, 10syl 17 . . . . 5  |-  ( A  e.  Fin  ->  (
x  =  A  ->  x  e.  ~P A
) )
128, 11jaod 395 . . . 4  |-  ( A  e.  Fin  ->  (
( x  =  (/)  \/  x  =  A )  ->  x  e.  ~P A ) )
1312pm4.71rd 667 . . 3  |-  ( A  e.  Fin  ->  (
( x  =  (/)  \/  x  =  A )  <-> 
( x  e.  ~P A  /\  ( x  =  (/)  \/  x  =  A ) ) ) )
14 vex 3203 . . . . 5  |-  x  e. 
_V
1514elpr 4198 . . . 4  |-  ( x  e.  { (/) ,  A } 
<->  ( x  =  (/)  \/  x  =  A ) )
1615a1i 11 . . 3  |-  ( A  e.  Fin  ->  (
x  e.  { (/) ,  A }  <->  ( x  =  (/)  \/  x  =  A ) ) )
17 diffi 8192 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  \  x )  e. 
Fin )
18 biortn 421 . . . . . 6  |-  ( ( A  \  x )  e.  Fin  ->  (
( x  =  (/)  \/  x  =  A )  <-> 
( -.  ( A 
\  x )  e. 
Fin  \/  ( x  =  (/)  \/  x  =  A ) ) ) )
1917, 18syl 17 . . . . 5  |-  ( A  e.  Fin  ->  (
( x  =  (/)  \/  x  =  A )  <-> 
( -.  ( A 
\  x )  e. 
Fin  \/  ( x  =  (/)  \/  x  =  A ) ) ) )
2019anbi2d 740 . . . 4  |-  ( A  e.  Fin  ->  (
( x  e.  ~P A  /\  ( x  =  (/)  \/  x  =  A ) )  <->  ( x  e.  ~P A  /\  ( -.  ( A  \  x
)  e.  Fin  \/  ( x  =  (/)  \/  x  =  A ) ) ) ) )
212rabeq2i 3197 . . . 4  |-  ( x  e.  T  <->  ( x  e.  ~P A  /\  ( -.  ( A  \  x
)  e.  Fin  \/  ( x  =  (/)  \/  x  =  A ) ) ) )
2220, 21syl6rbbr 279 . . 3  |-  ( A  e.  Fin  ->  (
x  e.  T  <->  ( x  e.  ~P A  /\  (
x  =  (/)  \/  x  =  A ) ) ) )
2313, 16, 223bitr4rd 301 . 2  |-  ( A  e.  Fin  ->  (
x  e.  T  <->  x  e.  {
(/) ,  A }
) )
241, 4, 5, 23eqrd 3622 1  |-  ( A  e.  Fin  ->  T  =  { (/) ,  A }
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {cpr 4179   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-om 7066  df-er 7742  df-en 7956  df-fin 7959
This theorem is referenced by:  topdifinf  33197
  Copyright terms: Public domain W3C validator