MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr2 Structured version   Visualization version   Unicode version

Theorem exopxfr2 5266
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
Hypothesis
Ref Expression
exopxfr2.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
exopxfr2  |-  ( Rel 
A  ->  ( E. x  e.  A  ph  <->  E. y E. z ( <. y ,  z >.  e.  A  /\  ps ) ) )
Distinct variable groups:    x, y,
z, A    ph, y, z    ps, x
Allowed substitution hints:    ph( x)    ps( y, z)

Proof of Theorem exopxfr2
StepHypRef Expression
1 df-rel 5121 . . . . . . 7  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
21biimpi 206 . . . . . 6  |-  ( Rel 
A  ->  A  C_  ( _V  X.  _V ) )
32sseld 3602 . . . . 5  |-  ( Rel 
A  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
43adantrd 484 . . . 4  |-  ( Rel 
A  ->  ( (
x  e.  A  /\  ph )  ->  x  e.  ( _V  X.  _V )
) )
54pm4.71rd 667 . . 3  |-  ( Rel 
A  ->  ( (
x  e.  A  /\  ph )  <->  ( x  e.  ( _V  X.  _V )  /\  ( x  e.  A  /\  ph )
) ) )
65rexbidv2 3048 . 2  |-  ( Rel 
A  ->  ( E. x  e.  A  ph  <->  E. x  e.  ( _V  X.  _V ) ( x  e.  A  /\  ph )
) )
7 eleq1 2689 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( x  e.  A  <->  <. y ,  z
>.  e.  A ) )
8 exopxfr2.1 . . . 4  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
97, 8anbi12d 747 . . 3  |-  ( x  =  <. y ,  z
>.  ->  ( ( x  e.  A  /\  ph ) 
<->  ( <. y ,  z
>.  e.  A  /\  ps ) ) )
109exopxfr 5265 . 2  |-  ( E. x  e.  ( _V 
X.  _V ) ( x  e.  A  /\  ph ) 
<->  E. y E. z
( <. y ,  z
>.  e.  A  /\  ps ) )
116, 10syl6bb 276 1  |-  ( Rel 
A  ->  ( E. x  e.  A  ph  <->  E. y E. z ( <. y ,  z >.  e.  A  /\  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   <.cop 4183    X. cxp 5112   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-iun 4522  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  dvhopellsm  36406
  Copyright terms: Public domain W3C validator