MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocpbllem Structured version   Visualization version   Unicode version

Theorem f1ocpbllem 16184
Description: Lemma for f1ocpbl 16185. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypothesis
Ref Expression
f1ocpbl.f  |-  ( ph  ->  F : V -1-1-onto-> X )
Assertion
Ref Expression
f1ocpbllem  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem f1ocpbllem
StepHypRef Expression
1 f1ocpbl.f . . . . 5  |-  ( ph  ->  F : V -1-1-onto-> X )
2 f1of1 6136 . . . . 5  |-  ( F : V -1-1-onto-> X  ->  F : V -1-1-> X )
31, 2syl 17 . . . 4  |-  ( ph  ->  F : V -1-1-> X
)
433ad2ant1 1082 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  F : V -1-1-> X )
5 simp2l 1087 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  A  e.  V )
6 simp3l 1089 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  C  e.  V )
7 f1fveq 6519 . . 3  |-  ( ( F : V -1-1-> X  /\  ( A  e.  V  /\  C  e.  V
) )  ->  (
( F `  A
)  =  ( F `
 C )  <->  A  =  C ) )
84, 5, 6, 7syl12anc 1324 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  A )  =  ( F `  C )  <->  A  =  C ) )
9 simp2r 1088 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  B  e.  V )
10 simp3r 1090 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  D  e.  V )
11 f1fveq 6519 . . 3  |-  ( ( F : V -1-1-> X  /\  ( B  e.  V  /\  D  e.  V
) )  ->  (
( F `  B
)  =  ( F `
 D )  <->  B  =  D ) )
124, 9, 10, 11syl12anc 1324 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  B )  =  ( F `  D )  <->  B  =  D ) )
138, 12anbi12d 747 1  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-f1o 5895  df-fv 5896
This theorem is referenced by:  f1ocpbl  16185  f1olecpbl  16187
  Copyright terms: Public domain W3C validator